Microfacies textural variability in fluvio-aeolian sandstones from the Avilé Member, Neuquén Basin, Argentina
Keywords:
aeolian microfacies, fluvial microfacies, grain size analysis, petrographic characterisation, textural parametersAbstract
Understanding the internal microtextural heterogeneity of fluvio-aeolian successions can provide valuable insights both on the depositional mechanisms associated with their origin and on their quality as reservoir rocks. Microfacies analysis enables the integration of thin-section textural studies with outcrop-scale observations, which substantially improves our understanding of depositional dynamics across different subenvironments, as well as the interpretation of petrophysical properties distribution. This approach is particularly relevant for reservoirs such as the Avilé Member of the Agrio Formation, as small-scale textural variability has become increasingly important due to the implementation of enhanced recovery techniques in recent years. This unit is characterised by fluvial and aeolian sandstones and constitutes one of the main conventional hydrocarbon reservoirs in the Neuquén Basin. In light of this, the general objective of this work was to compare aeolian and fluvial laminae to improve small-scale textural heterogeneities modelling of the defined facies from mesoscopic analysis. The methodology involved first describing and interpreting the units at the mesoscopic scale, and then characterising the different lamina types at the microscopic scale to define the microfacies. Five distinct lamina types, each representing a specific sedimentary process, were identified in the field within a well-established stratigraphic framework. Their textural petrographic characterisation allowed the definition of five corresponding microfacies —three associated with aeolian deposits and two with fluvial deposits. The results suggest a strong correspondence between textural parameters and the sedimentary process responsible for deposition. The analysis showed both differences among deposits formed by the same transport and depositional agent, and similarities between aeolian and fluvial deposits formed by analogous depositional mechanisms. This suggests that the depositional process may exert greater control on deposit texture than the characteristics of the transport and depositional agent. The study contributes to a more accurate characterisation of small-scale heterogeneities, which is essential for improving facies modelling and reservoir prediction. Overall, the findings highlight the complexity of interpreting microtextural heterogeneity and underscore the value of detailed microfacies analysis as a complement to field studies for improved reservoir characterisation.
References
Aguirre-Urreta, M. B., and Rawson, P. F. (1997). The ammonite sequence in the Agrio Formation (Lower Cretaceous), Neuquén Basin, Argentina. Geological Magazine, 134(4), 449–458. https://doi.org/10.1017/S0016756897007206
Aguirre-Urreta, M. B., Rawson, P. F., Concheyro, G. A., Bown, P. R., and Ottone, E. G. (2005). Lower Cretaceous (Berriasian–Aptian) biostratigraphy of the Neuquén Basin. In G. D. Veiga, L. A. Spalletti, J. A. Howell, E. Schwarz (Eds.), The Neuquén Basin, Argentina: A Case Study in Sequence Stratigraphy and Basin Dynamics, Geological Society, London, Special Publications, 252, 57–81. https://doi.org/10.1144/GSL.SP.2005.252.01.04
Allen, J. R. L. (1962). Asymmetrical ripple marks and the origin of cross-stratification. Nature, 194(4824), 167–169. https://doi.org/10.1038/194167a0
Allen, J. R. L. (1968). The nature and origin of bed-form hierarchies. Sedimentology, 10(3), 161–182. https://doi.org/10.1111/j.1365-3091.1968.tb01110.x
Allen, J. R. L. (1982). Sedimentary structures: Their character and physical basis (Vol. 1). Elsevier.
Al-Masrahy, M. A., and Mountney, N. P. (2014). Approaches to modelling stratigraphic heterogeneity in mixed fluvial and aeolian hydrocarbon reservoirs [abstract]. 2014 AAPG Annual Convention and Exhibition, Houston, Texas. https://eprints.whiterose.ac.uk/id/eprint/83924/
Argüello, J. (2011). Yacimiento Puesto Hernández. In H. A. Leanza, C. Arregui, O. Carbone, D. N. Danieli, and J. C. Vallés (Eds.), Geología y Recursos Naturales de la Provincia del Neuquén, Relatorio del XVIII Congreso Geológico Argentino, 663–668. Asociación Geológica Argentina.
Argüello Scotti, A., Matías, M., Martino, L., Veiga, G. D., and Mayoral, J. P. (2022). Preserved eolian bedforms control reservoir heterogeneity: Characterization and modeling workflow for the Avilé Member, Neuquén Basin, Argentina. Marine and Petroleum Geology, 146, 105930. https://doi.org/10.1016/j.marpetgeo.2022.105930
Bentley, M., and Ringrose, P. (2021). Reservoir Model Design: A Practitioner's Guide. Springer.
Bagnold, R. A. (1941). The physics of blown sand and desert dunes. Methuen and Co. Ltd.
Bofill, L., Bozetti, G., Schäfer, G., Ghienne, J. F., Schuster, M., Heap, M. J., Knobelock, G., Scherer, C., Armenlenti, G. and de Souza, E. (2025). Sedimentary control on permeability heterogeneity: The middle Buntsandstein continental sandstones (Lower Triassic, eastern France). Marine and Petroleum Geology, 173, 107261. https://doi.org/10.1016/j.marpetgeo.2024.107261
Bokman, J. (1956). Terminology for stratification in sedimentary rocks. Geological Society of America Bulletin, 67(1), 125–126. https://doi.org/10.1130/0016-7606(1956)67[125:TFSISR]2.0.CO;2
Bridge, J. S. (2003). Rivers and floodplains: forms, processes, and sedimentary record. John Wiley and Sons.
Campbell, C. V. (1967). Lamina, laminaset, bed and bedset. Sedimentology, 8(1), 7–26. https://doi.org/10.1111/j.1365-3091.1967.tb01301.x
Clemmensen, L. B., and Abrahamsen, K. (1983). Aeolian stratification and facies association in desert sediments, Arran basin (Permian), Scotland. Sedimentology, 30(3), 311–339. https://doi.org/10.1111/j.1365-3091.1983.tb00676.x
Collinson, J., and Mountney, N. (2019). Sedimentary structures. Liverpool University Press.
Coronel, M. D., Isla, M. F., Veiga, G. D., Mountney, N. P., and Colombera, L. (2020). Anatomy and facies distribution of terminal lobes in ephemeral fluvial successions: Jurassic Tordillo Formation, Neuquén Basin, Argentina. Sedimentology, 67(5), 2596–2624. https://doi.org/10.1111/sed.12712
De Ros, L. F. (1998). Heterogeneous generation and evolution of diagenetic quartzarenites in the Silurian-Devonian Furnas Formation of the Paraná Basin, southern Brazil. Sedimentary Geology, 116(1–2), 99–128. https://doi.org/10.1016/S0037-0738(97)00081-X
Folk, R. L., and Ward, W. C. (1957). Brazos River bar [Texas]; a study in the significance of grain size parameters. Journal of sedimentary research, 27(1), 3–26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
Friedman, G. M. (1958). Determination of sieve-size distribution from thin-section data for sedimentary petrological studies. The Journal of Geology, 66(4), 394–416. https://doi.org/10.1086/626525
Fryberger, S. G., and Schenk, C. (1981). Wind sedimentation tunnel experiments on the origins of aeolian strata. Sedimentology, 28(6), 805–821. https://doi.org/10.1111/j.1365-3091.1981.tb01944.x
Fryberger, S. G., Knight, R., Hern, C., Moscariello, A., and Kabel, S. (2011). Rotliegend facies, sedimentary provinces, and stratigraphy, Southern Permian Basin UK and the Netherlands: a review with new observations. In J. Grötsch and R. Gaupp (Eds.), The Permian Rotliegend of the Netherlands, SEPM Special Publication 98, 51–88. https://doi.org/10.2110/pec.11.98.0051
Gulisano, C., Minniti, S., Rossi, G., and Villar, H. J. (2001, November). The Agrio petroleum system: Hydrocarbon contribution and key elements, Neuquén Basin, Argentina [abstract]. 2001 AAPG Hedberg Research Conference: “New Technologies and New Play Concepts in Latin America”, Mendoza.
Henares, S., Caracciolo, L., Cultrone, G., Fernández, J., and Viseras, C. (2014). The role of diagenesis and depositional facies on pore system evolution in a Triassic outcrop analogue (SE Spain). Marine and Petroleum Geology, 51, 136–151. https://doi.org/10.1016/j.marpetgeo.2013.12.004
Henares, S., Caracciolo, L., Viseras, C., Fernández, J., and Yeste, L. M. (2016). Diagenetic constraints on heterogeneous reservoir quality assessment: A Triassic outcrop analog of meandering fluvial reservoirs. AAPG Bulletin, 100(9), 1377–1398. https://doi.org/10.1306/04041615103
Howell, J., and Mountney, N. (2001). Aeolian grain flow architecture: hard data for reservoir models and implications for red bed sequence stratigraphy. Petroleum Geoscience, 7(1), 51–56. https://doi.org/10.1144/petgeo.7.1.51
Howell, J. A., Schwarz, E., Spalletti, L. A., and Veiga, G. D. (2005). The Neuquén basin: an overview. In G. D. Veiga, L. A. Spalletti, J. A. Howell, E. Schwarz (Eds.), The Neuquén Basin, Argentina: A Case Study in Sequence Stratigraphy and Basin Dynamics, Geological Society, London, Special Publications, 252(1), 1–14. https://doi.org/10.1144/GSL.SP.2005.252.01.01
Huang, Y., Ringrose, P. S., and Sorbie, K. S. (1995). Capillary trapping mechanisms in water-wet laminated rocks. SPE Reservoir Engineering, 10(04), 287–292. https://doi.org/10.2118/28942-PA
Huang, Y., Ringrose, P. S., Sorbie, K. S., and Larter, S. R. (1996). The effects of heterogeneity and wettability on oil recovery from laminated sedimentary structures. SPE Journal, 1(04), 451–462. https://doi.org/10.2118/30781-PA
Hunter, R. E. (1977). Basic types of stratification in small eolian dunes. Sedimentology, 24(3), 361–387. https://doi.org/10.1111/j.1365-3091.1977.tb00128.x
Hunter, R. E. (1985). Subaqueous sand-flow cross strata. Journal of Sedimentary Research, 55(6), 886–894. https://doi.org/10.1306/212F8832-2B24-11D7-8648000102C1865D
Hunter, R. E., and Kocurek, G. (1986). An experimental study of subaquaeous slipface deposition. Journal of Sedimentary Research, 56(3), 387–394. https://doi.org/10.1306/212F8922-2B24-11D7-8648000102C1865D
Jarzyna, J., Puskarczyk, E., Bala, M., and Papiernik, B. (2009). Variability of the Rotliegend sandstones in the Polish part of the Southern Permian Basin-permeability and porosity relationships. Annales Societatis Geologorum Poloniae 79(1), 13–26.
Kahn, J. S. (1956). The analysis and distribution of the properties of packing in sand-size sediments: 1. On the measurement of packing in sandstones. The Journal of Geology, 64(4), 385–395. https://doi.org/10.1086/626372
Kocurek, G., and Dott, R. H. (1981). Distinctions and uses of stratification types in the interpretation of eolian sand. Journal of Sedimentary Research, 51(2), 579–595. https://doi.org/10.1306/212F7CE3-2B24-11D7-8648000102C1865D
Legarreta, L., and Gulisano, C. A. (1989). Análisis estratigráfico secuencial de la Cuenca Neuquina (Triásico superior-Terciario inferior). Cuencas sedimentarias argentinas, 6(10), 221–243. 10° Congreso Geológico Argentino.
Legarreta, L., and Uliana, M. A. (1991). Jurassic-marine oscillations and geometry of back-arc basin fill, central Argentine Andes. In: D. I. M. Macdonald (Ed.), Sedimentation, Tectonics and Eustasy: Sea-Level Changes at Active Margins, 429–450. Wiley. https://doi.org/10.1002/9781444303896.ch23
Limarino, C. O., Spalletti, L. A., and Piñol, F. C. (2015). Microfabrics in eolian sandstones of the De La Cuesta Formation (Permian), Sierra de Narváez, Catamarca Province, Argentina. Latin American Journal of Sedimentology and Basin Analysis, 22(2), 83–108. https://lajsba.sedimentologia.org.ar/lajsba/article/view/194
Limarino, C. O, Marenssi, S. A., and Ciccioli, P. L. (2025). Petrología de areniscas y conglomerados.
Mountney, N. P. (2006) Eolian Facies Models. In H. Posamentier and R. G. Walker (Eds.), Facies Models Revisited, SEPM Society for Sedimentary Geology 84, 19–83. https://doi.org/10.2110/pec.06.84.0019
Nichols, G. (2009). Sedimentology and stratigraphy (2nd ed.). Wiley-Blackwell.
Nickling, W. G., Neuman, C. M., and Lancaster, N. (2002). Grainfall processes in the lee of transverse dunes, Silver Peak, Nevada. Sedimentology, 49(1), 191–209. https://doi.org/10.1046/j.1365-3091.2002.00443.x
Pandalai, H. S., and Basumallick, S. (1984). Packing in a clastic sediment: concept and measures. Sedimentary geology, 39(1–2), 87–93. https://doi.org/10.1016/0037-0738(84)90027-7
Pickup, G. E., Ringrose, P. S., Corbett, P. W. M., Jensen, J. L., and Sorbie, K. S. (1994). Geology, geometry, and effective flow. Petroleum Geoscience 1 (1), 37–42. https://doi.org/10.1144/petgeo.1.1.37
Prámparo, M. B., and Veiga, G. D. (2024). Palynological data from the Hauterivian Avilé Member, Pampa Tril section, Agrio Formation, Neuquén Basin, Argentina. Journal of South American Earth Sciences, 138, 104865. https://doi.org/10.1016/j.jsames.2024.104865
Pringle, J. K., Howell, J. A., Hodgetts, D., Westerman, A. R., and Hodgson, D. M. (2006). Virtual outcrop models of petroleum reservoir analogues: a review of the current state-of-the-art. First break, 24(3). https://doi.org/10.3997/1365-2397.2006005
Robinson, A. E. (1981). Facies types and reservoir quality of the Rotliegendes Sandstone, North Sea. [abstract]. 1981 SPE Annual Technical Conference and Exhibition, San Antonio, Texas. https://doi.org/10.2118/10303-MS
Rodríguez-López, J. P., Clemmensen, L. B., Lancaster, N., and Veiga, D. G. (2014). Archean to Recent aeolian sand systems and their sedimentary record: current understanding and future prospects. Sedimentology 61(6), 1487–1534. https://doi.org/10.1111/sed.12123
Roduit, N. (2022). JMicroVision (Version 1.3.4) [Computer software]. Geneva, Switzerland: N. Roduit. https://jmicrovision.github.io.
Rosenfeld, M. A., Jacobsen, L., and Ferm, J. C. (1953). A comparison of sieve and thin-section technique for size analysis. The Journal of Geology, 61(2), 114–132. https://doi.org/10.1086/626060
Rossi, G. and Masarik, C. 2002. Acumulaciones de hidrocarburos en areniscas eólicas. Un ejemplo del hauteriviano de la Cuenca Neuquina. 15º Congreso de Exploración de Hidrocarburos, Mar del Plata.
Scasso, R. A., and Limarino, C. O. (1997). Petrología y diagénesis de rocas clásticas. Publicación Especial 1, Asociación Argentina de Sedimentología.
Schenk, C. J. (1983). Textural and structural characteristics of some experimentally formed eolian strata. In M.E. Brookfield and T.S. Ahlbrandt (Eds.), Eolian Sediments and Processes, Developments in Sedimentology, 38, 41–49. https://doi.org/10.1016/S0070-4571(08)70787-8
Sharp, R. P. (1963). Wind ripples. The Journal of Geology, 71(5), 617–636. https://doi.org/10.1086/626936
Spalletti, L. A., and Veiga, G. D. (2007). Variability of continental depositional systems during lowstand sedimentation: an example from the Kimmeridgian of the Neuquén Basin, Argentina. Latin American journal of sedimentology and basin analysis, 14(2), 85–104. https://lajsba.sedimentologia.org.ar/index.php/lajsba/article/view/96
Taylor, J. M. (1950). Pore-space reduction in sandstones. AAPG Bulletin, 34(4), 701–716. https://doi.org/10.1306/3D933F47-16B1-11D7-8645000102C1865D
The MathWorks, Inc. (2022). MATLAB (Version 9.13.0, R2022b) [Computer software]. Natick, Massachusetts: The MathWorks, Inc. https://www.mathworks.com
Tucker, Maurice E. (2001). Sedimentary petrology: An introduction to the origin of sedimentary rocks (3rd ed.). Blackwell Science.
Tucker, M. E., and Jones, S. J. (2023). Sedimentary petrology. John Wiley and Sons.
Valenzuela, M., Schiuma, M., Hinterwimmer, G., and Vergani, G. (2002). Los reservorios del Miembro Avilé de la Formación Agrio. Rocas Reservorio de las Cuencas Productivas de la Argentina, 5º Congreso de Exploración y Desarrollo de Hidrocarburos, 433–446.
Valenzuela, M. E., Cómeron, R., Masarik, M. C., and Vallejo, M. D. (2011). Yacimientos Chihuido de la Sierra Negra, Lomita, Lomita Norte y El Trapial. In H. A. Leanza, C. Arregui, O. Carbone, D. N. Danieli, and J. C. Vallés (Eds.), Geología y Recursos Naturales de la Provincia del Neuquén, Relatorio del XVIII Congreso Geológico Argentino, 677–688. Asociación Geológica Argentina.
Veiga, G. D., Spalletti, L. A., and Flint, S. (2002). Aeolian/fluvial interactions and high-resolution sequence-stratigraphy of a non-marine lowstand wedge: the Avilé Member of the Agrio Formation (Lower Cretaceous), central Neuquén Basin, Argentina. Sedimentology, 49(5), 1001–1019. https://doi.org/10.1046/j.1365-3091.2002.00487.x
Veiga, G. D., Spalletti, L. A., and Flint, S. (2007). Anatomy of a fluvial lowstand wedge: the Avilé Member of the Agrio Formation (Hauterivian) in central Neuquén Basin (northwest Neuquén province), Argentina. In G. Nichols, E. Williams, and C. Paola (Eds.), Sedimentary Processes, Environments and Basins: A Tribute to Peter Friend, 341–365. https://doi.org/10.1002/9781444304411.ch16
Veiga, G. D., Spalletti, L. A., and Schwarz, E. (2011). El Miembro Avilé de la Formación Agrio (Cretácico Temprano). In H. A. Leanza, C. Arregui, O. Carbone, D. N. Danieli, and J. C. Vallés (Eds.), Geología y Recursos Naturales de la Provincia del Neuquén, Relatorio del XVIII Congreso Geológico Argentino, 2–6. Asociación Geológica Argentina.
Vergani, G. D., Tankard, A. J., Belotti, H. J., and Welsink, H. J. (1995). Tectonic evolution and paleogeography of the Neuquén Basin, Argentina. In A. J. Tankard, R. Suárez Soruco, and H. J. Welsink (Eds.), Petroleum basins of South America, American Association of Petroleum Geologists, 383–402. https://doi.org/10.1306/M62593C19
Visher, G.S. (1969) Grain-Size Distribution and Depositional Processes. Journal of Sedimentary Petrology, 39, 1074–1106.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Eusebio Coelho Tenazinha, Joaquín Perez Mayoral, Gonzalo Diego Veiga

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
