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ABSTRACT

Global sea level is rising and it is expected to continue rising as the atmosphere 
is warming, inducing glacier melting. Based on this, a minimum of 0.4 m of sea 
level rise (SLR) is expected for the year 2100. While coastal erosion is the most 
evident consequence of SLR, its impacts on estuarine areas are more difficult 
to discern. In some areas, climate is warming and rains are increasing, and 
are thought to continue doing so in Buenos Aires, while they are decreasing 
in Patagonia. Therefore, estuarine and freshwater/salt marshes areas would 
have different responses along the Argentine coast. Even more significant 
will be the effects in urban areas where planning and management strategies 
have systematically overlooked these risks. In low-lying areas such as the 
Samborombón Bay, the SLR will cause a surface retreat of the salt-fresh water 
interface affecting cities like General Lavalle. Flash floods today can affect San 
Clemente del Tuyú city, but the performance of the discharge pipelines depends 
on the meteorological effects on the tides. Flash floods have also affected coastal 
cities of the semidesertic Patagonia: Puerto Madryn and Comodoro Rivadavia 
have suffered unprecedented floods during recent years. Two models are applied 
to coast evolution in response to SLR: Bruun’s model predicts shore erosion and 
deposition below the wave base level (closure depth). However, in low-lying areas 
where there is enough sediment availability, the onshore migration of bedforms 
(beaches, cheniers) can occur. Changes in estuarine areas are particularly difficult 
to predict. Tidal prisms can increase significantly in microtidal coasts due to 
SLR, but in macrotidal coasts these increments were not significant. Another 
effect of the SLR occurs at the hydrogeological interphase between fresh and salt 
groundwater. The simulation of these interactions should be carefully estimated 
considering the groundwater discharge and the climate change effects on the 
precipitation.
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INTRODUCTION

If the Present is the key to the Past, it is more 
logical that the Present is a necessary key to the 

Future. However, it is not as simple: The Earth System 
behaves as a single, self-regulating system comprised 
of physical, chemical, biological and human 
components... Human activities are significantly 
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influencing Earth’s environment in many ways in 
addition to greenhouse gas emissions and climate 
change… Global change cannot be understood in 
terms of a simple cause-effect paradigm… Earth 
System dynamics are characterised by critical 
thresholds and abrupt changes… In terms of some 
key environmental parameters, the Earth System 
has moved well outside the range of the natural 
variability exhibited over the last half million years 
at least. (Pronk, 2002).

Based mainly on altimeter data from satellites, it 
is forecasted that global sea level would rise 0.4 to 
0.8 m by the year 2100 (Oppenheimer et al., 2019; 
Fig. 1). However, these methods do not discriminate 
increments due to thermosteric changes (Thompson 
and Tabata, 1987). In South America, sea-level rise 
(SLR) also increases temporarily in areas subject to 
El Niño Southern Oscillation (ENSO) floods (Isla, 
2018).

Figure 1. a) Future projections of the sea level according to the International Panel on Climate Change (Oppenheimer et al., 2019). 
Representative concentration pathways (RCP) are the different scenarios estimated by the IPCC. b) ENSO-triggered floods of the 
Paraná River of 1982, 1998, and 2015 recorded at the Timbúes Station, Santa Fe province (m3/s vs. months; Isla, 2018).

This review considers the effects of the SLR in 
Argentina, specifying the impacts in different regions 
with particular environmental and/or anthropogenic 
conditions. This analysis comprises results from 
several processes such as coastal retreat, tidal prism 
and minimum area relationships, coastal wetlands 
evolution, groundwater saline intrusion, water 
supply to coastal cities, and their pluvial and sewage 
discharges.

ARGENTINE COASTAL VARIATION

From north to south, the coast of Argentina extends 
from temperate to cold climates, with temperature 
and precipitation diminishing southward (Isla et al., 
2010), and a prevalence of westerly winds (Fig. 2A). 

Rains have increased in the last 100 years in 
Buenos Aires, Mar del Plata and Tres Arroyos 
(Cortizo and Isla, 2007; Barros et al., 2014; Kruse et 
al., 2014; Fig. 2B) while are diminishing in Patagonia, 

Figure 2. a) Wind velocity frequencies (km/h) along the Southern Hemisphere (modified after Isla et al., 2021). b) Annual 
precipitation (mm vs. years) in Mar del Plata (Camet airport) from 1901 to 2024.
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although the intervals of measurements are much 
shorter (Isla and Isla, 2024).

The Argentine coast comprises microtidal areas 
at the north and macrotidal to the south (Isla and 

Bujalesky, 1995; Fig. 3). Tidal ranges increase in 
embayments (Bahia Blanca, Bahia Grande), gulfs 
(San Matías, San José, Nuevo, San Jorge) and the 
Magallanes Strait.

Figure 3. Tidal ranges 
along the Argentine coast 
(modified after Isla and 
Bujalesky, 1995). Estuaries 
where minimum flow 
areas were estimated are 
indicated with dots; the 
Mar Chiquita coastal lagoon 
is the only outlet located in 
the microtidal coast.

Figure 4. Mean tidal ranges along the Mar Chiquita 
coastal lagoon diminish to the headlands (modified 
after Isla and Gaido, 2001). The mean salinity values 
(UPS) during normal conditions also diminish to the 
headlands.
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The tidal excursion can change to the headlands of 
estuaries. The tidal range can increase (amplification) 
or decrease (dampening). Topography variations 
along the estuarine profile can cause reflection 
effects, and the sinusoidal wave can be significantly 
deformed to the headlands (Fig. 5). Amplifications 
are common along the Patagonian gulfs and bays 

as at the Bahia Blanca embayment, and the San 
Matías and San Jorge gulfs (Isla et al., 2002, 2023). 
Dampening effects have been recorded along the 
Mar Chiquita coastal lagoon (Isla and Gaido, 2001). 
Reflection effects were measured at the Quequén 
Grande estuary (Perillo et al., 2005).

Figure 5. Mechanisms altering the 
propagation of tidal waves along different 
types of river discharges and morphologies 
(modified after Khojasteh et al., 2021).

Regarding the recurrence of storms from the south 
and southeast (sudestadas), an inventory of the stronger 
storms (Storm erosion potential index) based on tidal 
data from Mar del Plata Station has been reported for 
the end of the 20th century (Fiore et al., 2009). However, 
there is no report about this recurrence during the 21st 
century or about an increase in their trends.

METHODS

Tidal parameters were collected from the main 
harbours of the Argentine coast (https://www.
hidro.gov.ar/oceanografia/Tmareas/Form_Tmareas.
asp). Minimum flow areas were estimated from 
nautical charts of the best accuracy of the National 
Hydrographic Survey of Argentina. Based on 

maximum tidal ranges recorded at certain locations 
of Mar Chiquita coastal lagoon interpolations were 
estimated along it applying GIS procedures. Coastal 
retreats, in m/yr, are average estimates of the coastal 
erosion. They were estimated comparing aerial 
photographs, Korona KH4satellite photographs, and 
satellite images. Details of these procedures and 
accuracy were already reported (Isla et al., 2018).

RESULTS

Coastal retreat and beach erosion

Two kinds of erosion processes can be 
distinguished in the Argentina coasts. The retreat 
of cliffs or scarps of dunes is of special concern 
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for the country and province authorities that are 
losing their heritage territories. On the other hand, 
the unbalances of beaches are of main concern to 
the touristic counties of Buenos Aires province that 
usually give concessions for renting shadow (tents 
or beach umbrellas). 

Regarding coastal evolution, the simple Bruun’s 
model is worldwide accepted, where the SLR means 
both shoreline retreat and deposition below the 
wave-action level (Bruun, 1962, 1988). 

Shoreline retreat (R) is therefore: 

eq. (1) R= S [L/ (b+h)]

Where S is the rise in mean sea level, b is the 
elevation of the berm, h is the depth of closure, and 

L is the width of the active beach profile (Bruun, 
1962). This rule has been repeatedly accepted by 
many authors (Wallace et al., 2010; Rosati et al., 
2013; Atkinson et al., 2018). 

However, when the coastal slope is very gentle 
with certain sediment availability, an onshore 
migration of the shoreline could apply (Fig. 6; Roy 
et al., 1995; Davidson-Arnott, 2005). For pocket 
beaches, or artificial beaches between groins, 
a shoreline retreat is expected but the subtidal 
deposition depends on the position of the salients 
(groynes lengths) that condition the entrance of the 
compartment. These conditions have been evident 
in crenulated paraglacial coasts where the concavity 
of the bay controls longshore transport (Carter et al., 
1987).

Figure 6. Shoreline response to sea level rise in relation 
to the coastal slope (modified after Roy et al., 1995). 
The dashed line represents the previous sea level and 
solid line after the SLR.

Coastal retreats in the Argentine coast were 
estimated comparing ancient photographs with 
modern satellite images (Isla and Cortizo, 2023). 
As the fixed points were lighthouses, located in 
places rather resistant to erosion, these rates are 
considered conservative (Fig. 7). Coastal retreat 
has been estimated during several intervals with 
more details in Buenos Aires province (Isla et al., 
2018; Isla and Cortizo, 2023). These intervals were 
selected to detect increments of dune-cliff retreats, 
the performance of coastal defences, and the effects 
of recent SLR.

The evolution models for sandy beaches do 
not apply as simply to gravel (gravel and sand) 
beaches. Several particular processes occur at 

these beaches: armouring, rollover, overwashing, 
overtopping, and overstepping (Forbes et al., 1991; 
Isla, 1992; Orford et al., 1995a, b). Different sea-
level evolutions were proposed according to SLR 
rates, sediment-supply rates, and gravel-barrier 
types (swash-aligned or drift-aligned; Forbes et 
al., 1995). Although tall cliffs dominate the coast 
of Patagonia and Tierra del Fuego, some areas 
are protected by the armouring effect of gravel-
dominated bedforms at their feet conditioning 
coastal retreat (Isla and Lamarchina, 2023).
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Figure 7. a) Coastal retreat (m/yr) at the Argentine coast (modified from Isla and Cortizo, 2023). b) Dune retreat (m/yr) at Partido 
de la Costa during several intervals: 1957-1985 (before anthropogenic SLR), 1985-2009 (after anthropogenic SLR), and 2009-2019 
(increase in storms recurrence; modified after Isla and Cortizo, 2023).

Tidal prism – Minimum flow area relationships

O’Brien (1969) proposed a simple empirical 
relationship between the tidal prism (P) and the 
minimum flow Area (Ac) for tidal inlets. These 
relations were estimated for some estuaries and tidal 
inlets of the Argentine coast (Isla and Bujalesky, 
1995). SLR implies an increase in P and therefore 

increments in the depths and widths of the inlets. 
These variations can be significant in microtidal 
coasts, compared to macrotidal coasts (Fig. 8). 
SLR also implies variations in tidal prisms, tidal 
asymmetries, increments in flooding depths, and the 
inundation excursions during storms (Passeri et al., 
2015).

Figure 8. O`Brien (1969) relationships (tidal prisms vs. 
minimum flow areas) applied to different tidal inlets 
of Argentina: Mar Chiquita, San Antonio Oeste, Caleta 
Valdés, Caleta Malaspina, Caleta Horno, Bahia San 
Julián, Puerto Santa Cruz, Ría Coig, Río Gallegos, Bahía 
San Sebastián, and Bahía Tethis (see locations in Figure 
3). White circles with dashes are tidal wedges estimated 
in Mar Chiquita that would increase due to the SLR 
(modified after Isla and Bujalesky, 1995).
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SLR can cause significant changes in the 
estuarine and tidal dynamics (Khojasteh et al., 2021). 
Where the depth of the tidal range is very large, SLR 
will not cause any significant effect (Fig. 9a). In 
other cases, there is an upstream tidal attenuation. 
Frictional effects dominate in choked lagoons (e.g., 
Mar Chiquita coastal lagoon) and therefore the tidal 
prism deforms into a wedge towards the headlands 
(Fig. 9b). In the case that the SLR would increase 

the minimum flow area, the tidal prism may 
increase (Fig. 9c). If the bathymetry and shape of the 
estuary remain unchanged, the SLR would signify a 
reduction in the energy slope during the ebb cycle 
(Fig. 9d). In large areas of low-lying floodplains 
(e.g., Samborombón Bay), the SLR would imply an 
increase in the area of intertidal environments as 
tidal flats and marshes (Fig. 9e).

Figure 9. Variations of the estuarine processes due to 
SLR (modified after Khojasteh et al., 2021).

At the coast of Magdalena and Punta Indio 
counties (outer Río de la Plata), the increase in the 
estuary level would affect the freshwater marsh 
communities, composed of Juncus acutus (juncal), 
Scirpus americanus (totora), Typha sp. (totora), 
Zizaniopsis bonariensis (espadaña), Vigna luteola 
(poroto de la playa), and trees of Erytrhina Crista 
Galli (ceibo) (Cellone et al., 2016; Lasta et al., 2019). 
Many authors believe that SLR would cause erosion 
of these vegetated areas (e.g., Fletcher, 1992). Others 
trusted that the increase in temperature and in CO2 

atmospheric concentration would induce a higher 
marsh production that could compensate the SLR 
(Fitzgerald and Hughes, 2019). The sedimentation 
rates of the Paraná river delta (Marcomini et al., 
2018; Quesada, 2019; Gallo, 2023) would surely 
fulfill the SLR requirements for the freshwater 
marsh progradation and accretion at the headlands 
of the Río de la Plata estuary. At the Magdalena 
coast, the zonation of Juncus, freshwater grass, and 
riverine woods (Fig. 10) can migrate onshore if there 
is enough sediment (fine sand) in proportion to the 
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SLR rates. Simlar effects are expected with some 
herbaceous plants from the north of the Eastern 
Buenos Aires Barrier, whose distribution is related 

to landform types, freshwater availability, and sea 
proximity (Marcomini et al., 2017).

Figure 10. Zonation 
of Juncus, riverine 
grass, and woods (Salix 
humboldtiana) at 
Balneario Magdalena.

SLR and saltwater intrusions

Recently, it was claimed that the contribution 
of wind waves to the coastal SLR has been 
underestimated (Melet et al., 2019, 2020). This 
proposal has been questioned based on the scarce 
information about wave setup statistics and their 
long-term trends (Aucan et al., 2018). To estimate 
these trends, it is necessary to analyse the foreshore 
slopes, avoiding those that have changed due to 
man-made sand unbalances. 

SLR also impacts coastal aquifers (Carretero et 
al., 2013). Along the Eastern Barrier of Buenos Aires, 
saltwater intrusion advances westwards, affecting 
the water table below the dunes in Pinamar, Villa 
Gesell, and Mar Chiquita. This salinization increases 
temporarily at crowded touristic cities (Pinamar, 
Villa Gesell). Along the Southern Barrier, instead, 
lateral salt intrusion is not significantly affected, as 
the salt content is related to the marine formations 
composing the coastal cliffs (Isla et al., 2024; Fig. 
11).

Figure 11. Sketch diagrams compared 
regarding the groundwater resistivity 
(ohm.m) across the Eastern and 
Southern barriers of Buenos Aires 
(modified after Rodrígues Capítulo, 
2015; Albouy et al., 2020; Isla et al., 
2024). At the Eastern Barrier the 
interface is an oblique dash line; at 
the Southern Barrier the interface is 
horizontal.
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Water supply to cities

SLR means a translation of the surface interface 
of fresh and salt water. In Patagonia, the freshwater 
supply is scarce, and many cities have had to apply 
to pipelines from distant rivers or lakes (San Antonio 
Oeste, Puerto Madryn, Comodoro Rivadavia, Caleta 
Olivia). Macrotidal regimes condition the landward 
extent of this interphase along estuaries. In these 
cases, the decrease in water supply for some rivers 
(Isla and Isla, 2024) would be critical for the fresh 
water availability to these cities. The forecasted 
minimum increment of 0.4 m in mean sea level for 
the year 2100 (Oppenheimer et al., 2019) should be 
simulated for some of these coastal cities. The water 
supply for these cities of the macrotidal coast is more 
dependent on the future rain and fluvial decreases 
than on the SLR. 

Quite different would be the availability of fresh 
water along the low-lying coast of Buenos Aires (i.e., 
the Samborombón Bay). During the peak of the crisis 
induced by the 2022-2023 drought, General Lavalle 
city had to be supplied by water delivered from the 
closer counties: La Costa and General Madariaga. The 
drainage that supplies freshwater to the city Channel 
2 was very low in February 2023; therefore, the most 
plausible alternative selected was to construct a 
Reverse Osmosis plant with a capacity of 30 m3/h.

Although an increase in precipitation is recorded 
and expected for the Southeast of South America 
(Magrin et al., 2014; Barros et al., 2014), it is very 
difficult to apply for long-term trends. Cycles, trends, 
and jumps were recorded in the recent past (Minetti 
and Vargas, 1997). At the same time, South America 
is particularly subject to anomalous years; for this 
region, El Niño means more rain in Argentina while 
La Niña imply drier conditions (Magrin et al., 2014).

	
Pluvial and sewage discharges

SLR will signify floods in low-lying cities. For 
example, pluvial pipelines constructed to drain 
urban areas at San Clemente del Tuyú (Partido de 
la Costa, Buenos Aires province) are beginning to 
receive seawater when meteorological tides induce 
the reversal of their purpose (Isla and Garzo, 2023). 
Combined sewer outfalls for coastal cities should 
therefore be planned considering the SLR (Passeri et 
al., 2015; Hummel et al., 2018) but also increments 
in flash floods recurrence.

Flash floods

Climate change also implies an increase in the 
risk of flash floods (Hirabayashi et al., 2013). Global 
models predict that 21% of the flood risk can be 
assigned to climate change, and 76.8% to population 
increase (Rogers et al., 2025). These kinds of floods 
have affected several cities in the last years and led 
to a specific PAGES project. For example, the flash 
floods of 2024 in Valencia, Spain, were attributed to 
climate change. Unprecedented floods were recently 
reported in Patagonia. In Puerto Madryn city, average 
rainfall is about 215 mm/yr. However, between April 
21 and April 24, 1998, 255 mm were recorded in 4 
days. On January 21, 2016, 24 mm precipitated in 
half an hour, and later 33 mm in 1 hour (Bilmes et 
al., 2016). Average rainfall sums about 244 mm/yr 
in Comodoro Rivadavia city. On March 29, 2017, 
399 mm precipitated and another 232 mm on 
March 31 (Paredes, 2019). On March 7, 2025, 300 
mm precipitated in the Bahia Blanca area in 4 hours 
(Barraza, 2025).

DISCUSSION

Most of the predictions for SLR are based on 
the issues analysed in the IPCC reports, in terms 
of confidence levels, likelihoods, and uncertainties 
(Abram et al., 2019). Considering these assumptions, 
some predictions can be subject to worldwide (SLR) 
or regional changes (precipitation in South America). 
This was considered as extreme and abrupt changes 
on the IPCC report about the ocean and cryosphere 
(Collins et al., 2019). For example, in 2004, the first 
hurricane was recorded in the South Atlantic Ocean 
(Pezza and Simmonds, 2005). 

Although the SLR forecasted by the IPCC 
was based on worldwide-estimated altimeter 
projections, there have been many doubts about 
regional accelerations (Church and White, 2006; 
Houston and Dean, 2011; Cronin, 2012; Gehrels 
and Woodworth, 2013; Boon and Mitchell, 2015; 
Ezer et al., 2016). Global variability in SLR has been 
continuously changing during recent times. No 
significant variations were recorded before 1930, 
but during the 1930-1960 interval, the SLR rates 
were about 2.5 mm/yr. Significant variability was 
recorded for the 1960-1980 interval but increasing 
to 3 mm/yr since 1993 (Church and White, 2006). 
However, considering sea-level records from the 
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Northern Hemisphere, it has been proposed that 
the SLR started between 1905 and 1945, although 
data from the Southern Hemisphere has been largely 
disregarded (Gehrels and Woodworth, 2013). 

The predictions listed above were based on SLR 
rates forecasted by IPCC (Oppenheimer et al., 2019). 
However, episodic jumps in sea level can occur and 
have occurred. A crucial issue in coastal areas is 
the impact of storm surges that are very difficult to 
predict in temperate areas (Bernier et al., 2024). On 
the other hand, some Antarctic glaciers are receding 
at anomalous rates (Graham et al., 2022). The effect 
of the rebound induced by the collapse of the 
Western Antarctic Ice Sheet is another issue difficult 
to forecast (Pan et al., 2021). 

Regional variations in the SLR rates can be 
explained by significant changes in the groundwater 
and oil pumping rates (Boon and Mitchell, 2015; 
Bagheri-Gavkosh et al., 2021). Although the tidal 
record of the harbour of Comodoro Rivadavia is too 
short (Brandani et al., 1985), its particular higher 
rate of sea level rise could be assigned to the historic 
oil pumping at that particular area. Subsidence is 
not expected for the Argentine coast, not even in 
areas that were glaciated. Only at the two largest 
deltas (Paraná and Colorado) can subsidence be 
expected, but there are no precision reports. The 
islands that were eroded at the Colorado River 
delta were assigned to changes in the distributary 
channels (Spalletti and Isla, 2003). Water pumping 
in northern Partido de la Costa (outer Río de la 
Plata) led to saltwater intrusion (Carretero et al., 
2013). 

The effects of the SLR on the tidal current 
components of the continental shelf of Patagonia were 
simulated for future increments of 1, 2, and 10 m (Luz 
Clara et al., 2015). However, some of these scenarios 
are unlikely to occur during the 21st century. 

As it has been reported, SLR is not the only process 
related to climate variations. Rains are assumed to 
increase along the Buenos Aires coastline. At the 
same time, based on the meteorological station 
records, rainfalls are assumed to diminish in 
Patagonia, affecting river discharges (Isla and Isla 
2024). 

Global simulations estimated that the wetland 
areas can increase up to 60% if there were enough 
accommodation space and sediment supplies remain 
at present levels (Schuerch et al., 2018). However, 
based on climate-based and socioeconomic-based 

scenarios, 33 of the 47 major deltas would experience 
reductions in their sediment supply by the end of 
the 21st century (Dunn et al., 2019). 

In the last years, strong ENSO floods have been 
particularly recurrent and stronger than in previous 
years. Stronger ENSOs were recorded during 1982-
1983, 1997-1998, 2015-2016, and 2023-2024. The 
main effect derived from this scenario is the flooding 
of low-lying coastal areas, as the wetlands of the 
Paraná delta, and headlands and southern floodplain 
of the Río de la Plata (Isla, 2018). 

Using tidal records from Buenos Aires, 
Montevideo and Mar del Plata it is concluded that 
stream-flow can explain half of the SLR of Buenos 
Aires record and a quarter of the tidal record from 
Montevideo (Piecuch, 2023). These SLR rates are 
faster-than-global and particularly affect the mouth 
of the Paraná and Uruguay rivers, but it is very 
difficult to discern the interannual components of 
these records. Integrated assessment models were 
formulated for climate-socioeconomic response 
interactions (Moss et al., 2010).

CONCLUSIONS

Considering the IPCC predictions on global SLR, 
and the particular conditions of the Argentine coast, 
some plausible conclusions are formulated:

1.	 The Buenos Aires microtidal coast is more 
subject to impacts derived from the predicted SLR. 
In this context, tidal prism increase can cause 
significant variations in the morphology of tidal 
inlets. In addition, the local availability of sand 
observed at Samborombón Bay, will condition the 
onshore migration of bedforms and the formation of 
cheniers and sand ridges by recurrent storms. 

2.	 Along the outer Río de la Plata, the retreat of 
the overbanks (low-altitude cliffs) will condition the 
preservation of freshwater plant communities. 

3.	 In the Northern coast of Argentina, beach 
erosion will be subject to increments due to a higher 
energy and recurrence of southeastern storms. 
However, along some intervals, present erosion is 
significantly subject to anthropogenic activities. 

4.	 Future coastal erosion in Patagonia would 
be conditioned by the armouring effect of gravel-
dominated bedforms. 

5.	 SLR will affect coastal cities, not only in 
their freshwater supply, but also in their drainage 
and sewage alternatives. 
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6.	 The impact of flash floods on coastal areas 
is another issue that could not be analysed from 
statistical records.
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