
121

LAJSBA
LATIN AMERICAN JOURNAL OF SEDIMENTOLOGY AND BASIN ANALYSIS | VOLUME 32 (2) 2025, 121-136

PREDICTIVE ANALYSIS OF TOTAL ORGANIC CARBON 
(TOC) IN SHALE TARGETS: EXAMPLE FROM THE LOWER 

CRETACEOUS OF THE AUSTRAL BASIN (PATAGONIA, 
ARGENTINA) USING MACHINE LEARNING ON OUTCROP 

DATA

Sebastián Richiano1,2* , Federico Ares1,2

1 Instituto Patagónico de Geología y Paleontología (CONICET-CENPAT), Boulevard Almirante Brown 2915, ZC: U9120ACD, Puerto Madryn, 
Chubut, Argentina. 

2 Universidad Nacional de la Patagonia San Juan Bosco, Boulevard Almirante Brown 3051, ZC: U9120ACD, Puerto Madryn, Chubut, Argentina.  
*Corresponding author: richiano@cenpat-conicet.gob.ar

ABSTRACT

The Río Mayer Formation (Lower Cretaceous) of the Austral Basin, Patagonia, 
is a key source rock for unconventional reservoirs. This study explores the 
potential of machine learning (ML) for predicting Total Organic Carbon (TOC) 
content using outcrop data, a novel approach compared to traditional subsurface 
data applications. Employing dimensional reduction techniques (PCA, T-SNE, 
UMAP), the analysis revealed clear clustering of high TOC values in feature 
space, supporting the feasibility of predictive modeling. Three ML models—
Logistic Regression, Support Vector Classifier (SVC), and K-Nearest Neighbors 
(KNN)—were tested using a feature set derived from ANOVA F-Score rankings. 
Dimensionality reduction improved model performance, with SVC achieving 
the most robust results. Despite limited labeled samples, predictions across 
models were consistent, identifying a promising region for high TOC. The study 
highlights the importance of integrating geological variables and XRD data in 
TOC modeling and emphasizes the need for expanded datasets and additional 
sedimentary sections to enhance regional interpretations.
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INTRODUCTION

In recent years, the use of machine learning 
methods to analyze, model, and predict various 
aspects of oil-bearing rocks has increased. These 
methods have been used to predict Total Organic 
Carbon (TOC; Handhal et al., 2020; Saporetti et al., 
2022), distribution of facies associations (Tognoli et 
al., 2024), rock brittleness (Guo et al., 2022; Mustafa 
et al., 2022; Ore and Gao, 2023), hydrocarbon 
production predictions (Prochnow et al., 2022), 

and for reservoir characterization (Niu et al., 
2022). These studies are based on subsurface data, 
using cores, cuttings, or petrophysical (wireline) 
data. Given the importance of analog outcrop data 
for petroleum system characterization (Busch et 
al., 2022), generating machine learning models 
from outcrop data is highly significant. However, 
scientific studies that integrate field and subsurface 
data using machine learning methods remain scarce 
(Milad et al., 2020). The TOC values represent 
the amount of organic carbon preserved in a rock 
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sample, and are often used to estimate the type 
of hydrocarbon produced and/or retained, and it 
defines the possibility of that rock to be a source 
rock for hydrocarbons (more than 1%) (Passey et al., 
1990; Handhal et al., 2020; Saporetti et al., 2022).

The Austral Basin is the southernmost oil-
producing basin in Argentina (Fig. 1). Initially, oil 
production came from conventional reservoirs. 
However, in the last decade the basin has been 
intensely explored for unconventional reservoirs (e.g. 
Belotti et al., 2013; 2014). The Río Mayer Formation 
(=Palermo Aike Formation in subsurface) constitutes 
the main exploration target for unconventional 
reservoirs in the basin (Rojas et al., 2022; Melendo 
et al., 2023, and references therein). This unit is 
primarily composed of black shales, with thinly 
interbedded marls and sandstones (e.g., Richiano 
et al., 2012). Unconventional shale reservoirs must 
possess various characteristics, but foremost are 
high TOC, rock brittleness, significant stratigraphic 
thickness, and broad areal distribution. The analysis 
of TOC is critical in oil-exploration, and efforts have 
been made to measure it at lower costs and in less 
time-consuming ways (e.g., Handhal et al., 2020; 
Saporetti et al., 2022).

In this paper, machine learning methods are applied 
for the first time on the Río Mayer Formation, a shale 
target for non-conventional reservoirs. In addition, 
this work is one of the few available models based on 
outcrop data. In the next sections we describe the unit 
and the data previously published, then we describe 
the methods applied and run the database to finally 
model the TOC prediction. Taking the above into 
consideration, the objectives of this contribution are: 
(1) to use machine learning to model the distribution 
of sedimentological features (observed in the field), the 
mineralogical composition, and the TOC from selected 
samples; (2) to develop a workflow for predicting TOC 
values in samples where measurements are missing; 
and (3) to assess the accuracy of different mathematical 
models applied in this case study.

GEOLOGICAL SETTING

The Austral-Magallanes Basin (Jurassic to Cenozoic) 
is located in the southernmost part of Patagonia, 
Argentina (Cuitiño et al., 2019) (Fig. 1). The basin was 
initiated by Late Jurassic extension associated with 
the El Quemado Complex (equivalent to the Tobífera 
Formation) syn-rift sequence (Féraud et al., 1999; 
Pankhurst et al., 2000). During subsequent transgression, 
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Figure 1. Location of the study area. a) General map of the Austral Basin in southern Patagonia. b) Position of the Seccional Río 
Guanaco (PN) of the Los Glaciares National Park, related stratigraphy and sedimentary sections used (full information at Richiano 
et al., 2012, 2015, 2019). Modified from Richiano et al. (2019).
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the continental to shallow marine Springhill Formation 
(Tithonian to Berriasian) was deposited (Kraemer 
and Riccardi, 1997; Richiano et al., 2016). During the 
Berriasian, the transgression continued, leading to the 
deposition of the Río Mayer Formation, marking the 
onset of post-rift (sag) conditions (Arbe, 2002). This 
unit mainly comprises black shales with fossiliferous 
levels indicating Berriasian-Albian deposition (i.e., 
Kraemer and Riccardi, 1997; Aguirre Urreta, 2002). 
The outcrops of the Río Mayer Formation are covered 
transitionally from north to south by the Piedra Clavada 
(=Kachaike), Lago Viedma and Cerro Toro formations 
during the Aptian/Albian (Richiano et al., 2012; Cuitiño 
et al., 2019).

At the Seccional Río Guanaco locality (Fig. 1) 
the Río Mayer Formation is ca. 400 m thick and was 
previously subdivided into three informal sections 
(Richiano et al., 2012). The lower section is dominated 
by laminated black shales interbedded with marls, 
with abundant ammonites and belemnites, interpreted 
as deposited in an outer shelf setting (Richiano et al., 
2012). This section has the highest TOC content of 
the Río Mayer Formation, ranging between 0.07 and 
2.81% (Richiano, 2014). The middle section is 40 m 
thick and it is composed of intensely bioturbated dark 
marls and shales, characterized by trace fossils of the 
Zoophycos Ichnofacies (Richiano et al., 2013; Richiano, 
2015). The TOC in the middle part of the section is very 
low (< 0.58%; Richiano, 2014). The upper section is 
composed of massive black shales intercalated with 
very fine- to fine-grained sandstones, interpreted as an 
outer shelf with distal low-density turbidity current 
deposits (Richiano et al., 2012). In this section, the 
Zoophycos Ichnofacies was also reported (Richiano et 
al., 2013; Richiano, 2015). This section shows moderate 
TOC values at the base (0.5-2 %, average 1.12 %) and 
extremely low values towards the top. The frequent 
intercalation of sandstones in the uppermost part of the 
section is related to the distal influence of the deltaic 
deposition whose lithologic expression at the basin 
margins is the Piedra Clavada Formation to the north 
(Richiano et al., 2012; 2015). 

DATABASE AND METHODS

Sedimentary sections and samples analyzed

Three sedimentary sections of the Lower 
Cretaceous Río Mayer Formation were selected for 
sedimentological, mineralogical and geochemical 

analyses (Sections IG, PG, PA; Fig. 2). A total of 106 
fine-grained rock samples from Río Mayer Formation 
were collected and analyzed (Fig. 2). The initial step 
involved converting the outcrop data into numerical 
values. In this sense, three “field parameters” 
were assigned to each sample. First, following the 
methodology used by Poiré et al. (2007), numerical 
values were assigned to sedimentary facies, wherein 
different values characterized the sedimentary 
texture and sedimentary structures (i.e., fabric). 
Secondly, different codes were applied to the 
sedimentary environments interpreted, using one 
(1) for outer shelf deposits and two (2) for outer 
shelf deposits influenced by deltaic environments. 
Finally, the last parameter is the bioturbation for 
which we use a binary discrimination between 
non-bioturbated (0) and bioturbated (1). The full 
sedimentary facies analysis, ichnology, and the 
compositional dataset used in this work are available 
in Richiano et al. (2012; 2013; 2015; 2019). 

The X-ray diffraction (XRD) characteristics of 
the samples were conducted on an X-PANalytical 
model X´Pert PRO diffractometer located at the 
Centro de Investigaciones Geológicas (CONICET-
UNLP, Argentina). The radiation source used was 
Cu/Ni, and the generation settings were set at 40 
kV and 40 mA. For the whole-rock analysis, semi-
quantification was obtained from the intensity of 
the main peak for each mineral (Schultz, 1964; 
Moore and Reynolds, 1997). Clay mineralogy was 
determined from diffraction patterns obtained 
using samples that were air-dried, ethylene glycol-
solvated and heated to 550ºC for 2 h (Brown and 
Brindley, 1980). 

Geochemical studies of the samples from the Río 
Mayer Formation include 17 samples analyzed for 
major, minor, trace elements, and rare earth elements 
(REE) by X-ray fluorescence spectrometry (XRF) and 
Inductively Coupled Plasma mass spectrometry (ICP-
MS) measurements performed by ACTLABS (Ontario, 
Canada). In addition, 28 samples were assessed to 
determine trace element composition at Centro de 
Investigaciones Geológicas laboratories (CONICET-
UNLP, Argentina). These samples were treated by 
dissolving the silicates in acid, and analyzed using 
a Perkin-Elmer ICP-MS fitted with a Meinhardt 
concentric nebulizer. Finally, 29 TOC values were 
obtained from within five lateral meters from the 
collected outcrop profile. TOC was ascertained by 
Geolab Sur S.A. (Buenos Aires, Argentina).
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Figure 2. Sedimentary logs of the Río Mayer Formation at the Seccional Río Guanaco locality (profiles IG, PG, PA located in figure 
1). XRD: x-ray diffraction analysis; TOC: Total Organic Carbon. Modified from Richiano et al. (2019).

The raw dataset consists of a total of 106 
samples, including 103 samples with XRD analysis 

(103 whole rock and 101 of clay), 45 geochemical 
analyses and 29 samples of TOC (Table 1).
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Sample

Geological field data X-Ray Diffraction

TOCLithology
Bioturbation

Environment Whole Rock Clays
Sed. 
Fac. NF 1 2 Qz Pl FK Ca Py I IS Cl K

PA-15 Pm 12 0 0 1 6 3 1 1 1 3 32 19 49 0  
PA-14 Pm 12 0 0 1 6 3 1 3 1 3 35 16 49 0 0,09
PA-13 Pm 12 0 0 1 6 3 1 2 1 3 39 11 49 0  
PA-11 Pm 12 0 0 1 6 3 1 3 1 3 30 15 55 0  
PA-10 Pm 12 0 0 1 6 3 1 3 0 3 28 21 51 0  
PA-9 Pm 12 0 0 1 6 4 1 3 0 3 38 14 48 0 0,09
PA-8 Pm 12 0 0 1 6 3 1 2 1 3 28 20 51 0  
PA-6 Pm 12 0 0 1 6 3 1 2 1 3 29 30 41 0 0,09
PA-5 Pm 12 0 0 1 6 4 1 1 1 3 30 19 51 0  
PA-3 Pm 12 0 0 1 6 4 1 1 1 4 36 5 59 0  
PA-2 Pm 12 0 0 1 6 3 1 1 1 3 32 9 58 0 0,09
PA-1 Pm 12 0 0 1 6 3 1 1 1 3 30 24 46 0  

     
PG 64 Pl 10 0 1 0 6 2 1 2 0 2 41 24 35 0  
PG 60 Pl 10 0 1 0 6 3 1 4 0 3 34 21 45 0 1,48
PG 59 Pl 10 0 1 0 6 2 1 1 0 2 41 31 27 0  
PG 55 Pm 12 0 1 0 6 3 1 2 0 3 39 23 38 0 0,6
PG 54 Pm 12 0 1 0 6 3 1 2 0 3 45 14 41 0  
PG 52 Pm 12 0 1 0 6 2 2 2 0 3 26 34 40 0  
PG 51 Pm 12 0 1 0 6 2 1 3 0 3 22 34 44 0  
PG 50 Pm 12 0 1 0 6 1 1 4 0 3 24 40 36 0 1,81
PG 48 Pm 12 0 1 0 6 1 1 3 0 3 25 24 51 0  
PG 45 Pm 12 0 1 0 6 3 1 1 0 2 34 13 52 0  
PG 44 Gg 40 0 1 0 5 4 1 6 1 4 20 20 60 0  
PG 43 Sm 30 0 1 0 4 5 1 5 0 3 56 0 44 0  
PG 42 Pm 12 0 1 0 6 1 1 2 0 2 22 21 57 0 0,62
PG 41 Sl 33 0 1 0 5 5 1 2 1 4 66 2 32 0  
PG 40 Pm 12 0 1 0 6 3 1 1 1 4 61 11 28 0  
PG 39 Sl 33 0 1 0 4 5 1 3 1 4 85 0 15 0  

Data Analysis

Data analysis and modeling were performed using 
Python, primarily using commonly available libraries 
such as NumPy, pandas, matplotlib, seaborn, umap-
learn, and scikit-learn. The dataset’s features were 
grouped into two categories: ‘geo’ for geological data 
(3 features) and ‘xrd’ for X-ray diffraction data (10 
features). Although X-ray fluorescence and ICP-MS 
data were included in the dataset, the sample size 
was too small for robust analysis. Missing XRD data 
were imputed using the population mean.

Exploratory Data Analysis (EDA) was conducted 
to investigate the dataset, applying dimensionality 
reduction techniques like PCA, T-SNE, and UMAP 
to project the feature space into two dimensions. 
Feature scaling was consistently applied using 
the StandardScaler class from scikit-learn. This 
process enabled the identification of high and low 
TOC areas, which are needed for TOC modeling. 
Visualizations of both labeled and unlabeled data 
(with and without TOC measurements) provide 
insight to the geological variability within and 
across sections.
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PG 38 Mb 13 1 1 0 6 3 1 1 1 4 22 0 78 0  
PG 37 Mb 13 1 1 0 6 4 1 1 0 4 71 0 29 0  
PG 36 Mb 13 1 1 0 6 3 1 2 1 3 37 12 51 0  
PG 35 Mb 13 1 1 0 6 3 1 3 0 3 38 23 39 0 0,58
PG 34 Mb 13 1 1 0 6 2 1 1 0 4 29 6 65 0  
PG 32 Mb 13 1 1 0 6 4 1 4 1 3 22 27 51 0  
PG 31 Mb 13 1 1 0 6 1 1 4 1 3 41 22 37 0  
PG 30 Mb 13 1 1 0 5 2 1 6 1 3 20 37 43 0 0,09
PG 29 Mb 13 1 1 0 6 3 1 5 1 3 61 17 23 0  
PG 28 Mb 13 1 1 0 6 1 1 5 0 2 36 27 35 2  
PG 27 Mb 13 1 1 0 6 3 1 4 0 3          
PG 26 Mb 13 1 1 0 6 1 1 5 0 3 33 30 36 0  
PG 25 Mb 13 1 1 0 6 1 1 4 1 2          
PG 24 Mb 13 1 1 0 6 3 1 4 0 3 66 18 16 0 0,17
PG 23 Mb 13 1 1 0 6 1 1 4 1 3 27 25 48 0  
PG 22 Mb 13 1 1 0 6 2 1 5 0 3 65 15 20 0  
PG 21 Mb 13 1 1 0 6 2 1 4 1 2 59 24 17 0  
PG 20 Mb 13 1 1 0 6 1 1 4 1 2 57 27 16 0  
PG 19 Mb 13 1 1 0 5 2 1 5 0 3 68 20 11 0 0,09
PG 18 Mb 13 1 1 0 6 1 1 5 1 2 43 47 9 1  
PG 17 Mb 13 1 1 0 5 2 1 5 0 2 85 12 3 1  
PG 16 Mb 13 1 1 0 6 2 1 4 1 2 64 23 13 0  
PG 15 Mb 13 1 1 0 5 2 1 5 0 3 61 20 11 8 0,07
PG 14 Mb 13 1 1 0 6 1 1 5 1 2 69 13 14 4  
PG 13 Mb 13 1 1 0 6 3 1 4 1 2 61 26 10 4  
PG 12 Mb 13 1 1 0 6 1 1 5 0 3 33 40 27 0  
PG 11 Mb 13 1 1 0 6 2 1 5 0 2 72 13 13 2  
PG 10 Mb 13 1 1 0 6 2 1 4 1 2 52 27 21 0  
PG 9 Mb 13 1 1 0 6 2 1 5 1 2 51 29 10 10 0,09
PG 8 Mb 13 1 1 0 6 1 1 4 1 3 62 23 15 0  
PG 7 Mb 13 1 1 0 6 1 1 5 1 3 37 34 19 10  
PG 6 Mb 13 1 1 0 6 2 1 4 1 3 50 26 18 6  
PG 5 Mb 13 1 1 0 6 2 1 5 0 2 71 19 11 0 0,13
PG 4 Mb 13 1 1 0 6 2 1 4 1 3 59 26 11 3  
PG 3 Mb 13 1 1 0 6 1 1 4 1 3 26 40 34 0  
PG 2 Mb 13 1 1 0 6 2 1 4 1 3 60 21 17 2  
PG 1 Mb 13 1 1 0 6 1 1 5 1 3 39 37 18 5  
BP 5 Pb 10 1 1 0 6 1 1 4 0 3 55 27 16 2 0,17
BP 4 Pb 10 1 1 0 6 2 1 3 0 3 40 32 28 0  
BP 3 Sm 30 1 1 0 6 5 1 5 0 3 6 17 76 0  
BP 2 Pb 10 1 1 0 6 3 1 4 0 3 26 29 41 4  
BP 1 Pb 10 1 1 0 6 1 1 4 0 2 41 27 23 9 0,31

       
IG 44 Pl 10 0 1 0 6 2 1 1 0 3 37 40 20 3 1,49
IG 43 Pl 10 0 1 0 6 2 1 3 0 3 34 40 20 6  
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Table 1. Data set used for modeling. References: Facies: P: Mudstone; M: Marl; S: Sandstone; G: Conglomerate/Sabulite; C: 
Carbonatic; m: massive; l: laminated; b: bioturbated; g: glauconitic. NF: numerical facies. Environment: 1- outer shelf, 2- outer 
shelf influenced by deltas; XRD: x-ray diffraction; Qz: Quartz, Pl: Plagioclase; FK: K-feldespar; Ca: Calcite; Py: Pyrite; Arc: total 
clays; I: Illite; IS: Illite-Smectite; Cl: Chlorite; K: Kaolinite; TOC: Total Organic Carbon.

IG 42 Pl 10 0 1 0 6 2 1 2 1 2 41 35 20 4 1,59
IG 41 Pl 10 0 1 0 5 1 1 5 0 2 48 34 12 6  
IG 40 Pl 10 0 1 0 6 1 1 4 0 2 34 44 15 7 2,44
IG 39 Pl 10 0 1 0 6 1 1 1 0 3 38 50 9 3 2,09

IG 37 - 
38 Pl 10 0 1 0 6 2 1 5 0 3 46 37 16 0 1,88

IG 36 Pl 10 0 1 0 6 1 1 1 0 3 45 39 13 4  
IG 34 - 

35 Pl 10 0 1 0 6 2 1 4 0 3 36 51 13 0 1,65

IG 32 - 
33 Pl 10 0 1 0 6 2 1 1 1 3 36 43 21 0  

IG 30 - 
31 Pl 10 0 1 0 6 2 1 3 0 2 35 44 18 3  

IG 29 Pl 10 0 1 0 3 1 1 6 0 2 52 31 12 6  
IG 27 - 

28 Pl 10 0 1 0 6 2 1 2 0 3 40 39 17 4 1,56

IG 26 Pl 10 0 1 0 6 1 1 1 1 3 44 37 15 4  
IG -24-

25 Pl 10 0 1 0 6 2 1 3 1 3 29 40 21 10  

IG 23 Mm 12 0 1 0 6 2 1 3 1 3 42 30 25 3 1,43
IG 22 Mm 12 0 1 0 6 2 1 3 0 3 41 37 20 2  

IG 20 - 
21 Pl 10 0 1 0 6 1 1 3 0 3 31 42 24 4  

IG 18 - 
19 Pl 10 0 1 0 6 1 1 3 0 3 50 32 17 2  

IG 17 Pl 10 0 1 0 6 1 1 5 0 3 34 42 20 4 2,81
IG 16 Mm 12 0 1 0 4 1 1 6 1 2 38 30 21 11  
IG14 - 

15 Pl 10 0 1 0 6 1 1 1 0 3 46 36 16 2  

IG 12 - 
13 Pl 10 0 1 0 6 2 1 3 0 3 47 28 25 0 1,52

IG 10 - 
11 Pl 10 0 1 0 6 2 1 3 0 3 64 23 11 3  

IG 9 Pl 10 0 1 0 6 2 1 3 0 3 48 39 13 0 1,59
IG 8 Pl 10 0 1 0 6 2 1 3 0 3 59 26 15 0  
IG 7 Pl 10 0 1 0 6 1 1 3 0 3 46 32 15 7  
IG 6 Pl 10 0 1 0 6 1 1 3 0 3 57 28 15 0  
IG 5 Pl 10 0 1 0 6 1 1 1 0 3 46 33 21 0  
IG 4 Pl 10 0 1 0 6 1 1 1 1 3 60 19 21 0 0,07
IG 3 Cm 12 0 1 0 2 1 1 6 1 2 37 29 29 4  
IG 2 Cm 12 0 1 0 2 2 1 6 1 2 77 18 3 2  
IG 1 Cm 12 0 1 0 2 1 1 6 0 2 64 24 6 6  
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Figure 3. Modeling Workflow. a) Data Preprocessing Workflow. Continuous TOC values are thresholded to obtain a binary High 
TOC label. Using this categorical label, an additive feature selection process is performed by using ANOVA F-Score. Exploratory 
Data Analysis using dimensional reduction on feature space (all xrd+geo features). b) TOC Modeling Workflow. By using a 
labeled dataset, a candidate model is fitted. Model hyperparameters are adjusted by performing a Bayesian Search Optimization 
(BSO), and the model’s generalization performance is estimated with Leave-One-Out (LOO) cross validation. The model with best 
average test accuracy is selected and refitted on the full dataset. c) High TOC Prediction Workflow. Using the trained model, High 
TOC is predicted for all samples (labeled and unlabeled), identifying potential regions of interest in feature space.

Data Preprocessing

Figure 3a illustrates the data preprocessing 
workflow. A threshold of >1 was applied to 
the measured TOC values to create a binary 
classification, with 1 indicating High TOC and 0 
indicating Low TOC. This threshold resulted in a 
nearly balanced dataset for training the classification 
model, removing the necessity for additional 
techniques (e.g., precision/recall metrics, over- or 
under-sampling) to address dataset imbalance.

In order to address feature space dimensionality 
during TOC modeling (13 features for only 29 
labeled samples), a feature selection process was 
implemented based on a feature importance metric. 

Several methods for computing feature importance 
were attempted (Random Forest, LinearSVC, 
Lasso and ANOVA). The quality of High/Low TOC 
separation in the feature space was evaluated 
using the silhouette coefficient (Rousseeuw, 1987). 
Feature selection was performed using an additive 
approach, prioritizing features in descending order 
of importance while monitoring changes in the 
silhouette score. The addition of features was halted 
upon observing a significant decline in the silhouette 
score.

Feature ranking by ANOVA F-Score and the 
computed silhouette are shown, as well as the impact 
of feature selection on sample spatial distribution in 
reduced dimension (T-SNE) in the results section.  
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TOC Modeling
 

The TOC modeling workflow is shown in figure 
3b. A candidate model is fitted to a labeled dataset 
consisting of a set of selected features and their 
corresponding discretized High-TOC labels. In 
order to test the hypothesis (i.e. modeling of TOC 
is possible) we run three classification methods: 
Logistic Regression, Support Vector Classifier (SVC) 
and K-Nearest Neighbours Classifier (KNN). These 
models have different working principles, one is 
a parametric baseline model (Logistic regression), 
another is a state-of-the-art parametric model (SVC) 
and the last is a non- parametric method (k-NN). All 
of them are available in the scikit-learn library.

Optimal hyperparameters for each model were 
determined using a combination of Bayesian 
Hyperparameter Search and Leave-One-Out (LOO) 
cross-validation, with the mean accuracy of the left-
out sample in each split serving as the performance 
metric. This method ensured the selection of 
hyperparameters that maximize predictive accuracy 
on unseen data. 

Following hyperparameter selection, train/test 
accuracy plots were visually inspected to assess 
variance and bias, serving as indicators of potential 
overfitting or underfitting. The model was then 
retrained using the selected hyperparameters on all 

labeled samples and applied to predict the High-TOC 
content for both labeled and unlabeled samples.

TOC Prediction

The prediction workflow (Figure 3c) uses the 
full dataset, including both labeled and unlabeled 
samples, as input to the selected model and generates 
predictions for TOC values. These predictions 
can be either continuous (probability of High 
TOC) or discrete (High TOC probability > 0.5). 
Model predictions can be visualized in a reduced-
dimensional space (e.g., T-SNE) to identify regions in 
the feature space associated with a high probability 
of High TOC.

RESULTS

This work focuses on the mathematical modeling 
of the data needed to predict TOC contents. In this 
sense, sedimentological, ichnological, environmental 
and/or compositional data can be found in Richiano 
et al. (2012; 2013; 2015; 2019).

Exploratory Data Analysis (EDA)

Figure 4 presents the results of dimensionality 
reduction methods (PCA, T-SNE, UMAP). High TOC 
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Figure 4. Exploratory Data Analysis via Dimensional Reduction. Left: Principal Component Analysis (PCA). Center: T-distributed 
Stochastic Neighbor Embedding (T-SNE). Right: Uniform Manifold Approximation and Projection for Dimension Reduction 
(UMAP). TOC values are mapped in point sizes, while different colors are assigned to each section. High-TOC samples are 
consistently grouped in a region of space in all dimension reduction schemas. T-SNE provides the best results in visualizing both 
inter- and intra-section variability.
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values cluster in a specific region corresponding 
to part of the PG section and nearly all labeled IG 
samples. In PCA space, the PG and IG sections 
significantly overlap, while PA is partially isolated 
with minor overlap with unlabeled PG samples. In 
T-SNE space, PA is distinctly isolated, and PG and 
IG show greater contrast. UMAP space reveals clear 
section contrasts: PA appears isolated in the lower 
left, while PG and IG show slight overlap in the lower 
right.

Feature ranking and selection

To reduce dimensionality before training the model, 
the most significant features were selected using 
ANOVA (Fig. 5a). Illite-Smectite abundance (xrd__arc_
is) emerged as the most significant feature, followed 
by geological features: sedimentary facies (geo__num_
facies), bioturbation (geo__bioturb), and environment 
(geo__amb). The Silhouette coefficient remained 

Feature Ranking by ANOVA
target: y_hi_toc

im
p

o
rt

a
n

ce

feature

si
lh

o
u

e
tt

e

A

B
Feature selection

best_anovaxrd+geo

section
PA
PG
IG

0.5
1.0
1.5
2.0
2.5

section
PA
PG
IG

0.5
1.0
1.5
2.0
2.5

t-sne_1 t-sne_1

t-
sn

e
_

2

t-
sn

e
_

2

Figure 5. a) Feature importance (ANOVA F-score) and resulting Silhouette score after additive feature selection. The Silhouette 
score shows an abrupt decline after adding the fifth feature, indicating a potentially poor intra vs inter-cluster definition. b) 
Visualization of feature selection results in T-SNE reduced dimension. Left: Dimension reduction using all features (xrd+geo) 
as reference. Right: Dimension reduction of four most ANOVA F-Score relevant features (best_anova). Higher TOC values are 
considerably compacted in feature space, while being visibly isolated from samples with lower TOC content.
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consistently high but dropped sharply after the fifth 
feature (Chlorite; xrd__arc_cl), so only the top four 
features were retained. Other ranking methods, though 
not shown, also identified the first three features as 
highly significant.

The spatial distribution of samples using all 
features versus the ANOVA-Silhouette selected 
features was compared in T-SNE reduced-
dimensional space (Fig. 5b). In the feature selection 
scenario (right), high TOC samples clustered 
prominently in the upper left corner.

Modeling 

Figures 6a and 6b show resulting mean accuracies 
of all trained models over train and test samples. 
Models trained on the full feature space (xrd+geo) 
show a greater tendency to overfit which is 

manifested as lower accuracies and a significant gap 
between train and test performance. While all models 
reported lower mean accuracies when trained in the 
full feature space, SVC appeared as the most robust 
model when working with higher dimensionality. 
When trained with a reduced feature set, the three 
proposed models showed improved performance. 
Logistic regression and SVC had a consistent test-
train accuracy over 0.96, whereas KNN improved 
only slightly below this value and exhibited some 
overfitting behavior. 

DISCUSSION

The analysis of the distribution of TOC content 
in shale targets is a crucial objective needed for the 
exploration and development of unconventional 
shale reservoirs. While detailed studies on the 
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Figure 6. Train/test accuracy plots ranked by best average test accuracy. Left: Logistic Regression. Center: Support Vector Classifier 
(SVC). Right: K-Nearest Neighbors. a) Trained with all features (xrd+geo): All models exhibit moderate overfitting, as indicated by 
high training accuracy and low test accuracy. Logistic Regression shows the worst performance. b) Trained with ANOVA selected 
features (best_anova): There is a significant improvement in the Logistic and Support Vector Classifier with consistent train/test 
accuracy values over 0.96, while KNN shows a slight improvement. Error bars represent 95% Confidence interval.
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outcrops of the main source rock in southern 
Patagonia have been published in the past decade 
(e.g., Richiano et al., 2019 and references therein), 
this study represents the first application of 
mathematical modeling to test the potential of 
machine learning as a predictive method for TOC. 
Given the unbalanced dataset, only outcrop data 
and XRD were used, while geochemical rock studies 
were excluded except for TOC content. 

During EDA all explored dimension reduction 
techniques proved to be useful to visualize 
distribution of labeled and unlabeled samples in 
feature space (Fig. 4). This is extremely useful to 
design a cost-effective analytical approach over 
remaining (TOC) unlabeled samples, to allow a 
uniform TOC sampling across feature space. Despite 
having only a limited number of labeled samples 
(approximately 30% of the dataset), spatial clustering 
of high TOC values was evident across all reduced-
dimensionality scenarios.

A major difference was observed in the spatial 
discrimination of different sections. PCA shows a 
superposition of all three sections, particularly in 
the PG and IG sections. T-SNE clearly distinguished 
the PA section as a completely isolated cluster, while 
the PG and IG sections show greater contrast, with 
minor overlap in high TOC values within PG. UMAP 
provides the best sectional contrast: IG is isolated 
in the upper-left corner, while PG and IG occupy 
a broader area in the lower-left, with minimal 
overlap between their coverages. However, UMAP 
fails to display intra-section variability, especially 
after applying feature selection. Overall, T-SNE 

provides the best results in visualizing both inter- 
and intra-section variability, making it the preferred 
dimensionality reduction technique for visualizing 
feature selection and modeling results. This result 
is highly promising for successful modeling, as it 
demonstrates the existence of a nonlinear mapping 
in which the sections exhibit non-overlapping 
coverage.

Feature ranking by ANOVA F-Score was key in 
successfully identifying features that are strongly 
related to high TOC content. Silhouette index 
allowed to monitor the impact of additive feature 
selection on the spatial isolation of the high 
TOC samples helping to develop visual criteria 
to set the number of selected features (Fig. 5a). 
Although not included in this work, Random 
Forest and LinearSVC were also evaluated for 
feature importance, showing strong agreement on 
the top three features. However, their Silhouette 
performance was inferior. Figure 5b shows how 
reduced dimensionality from 13 to 4 did not 
mitigate the discrimination of the High TOC cluster 
and drastically improved its density.

With only 29 samples available for TOC analysis 
compared to 13 features, modeling and cross-
validation are highly challenging. Dimensionality 
reduction through feature selection is essential for 
building a robust, generalizable model. Leave-One-Out 
cross-validation was used to estimate generalization 
accuracy but required extensive training iterations. 
Bayesian Search Optimization replaced exhaustive 
Grid Search, reducing training time.

Figure 7. Best Train and Test accuracies. Left: models trained with full dataset (xrd+geo). Right: ANOVA selected features (best_anova). 
Error bars represent 95% Confidence intervals. Modeling performance in the test set is improved in the feature selection scenario.
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Accuracy curves (Fig. 6a) for the full feature set 
(xrd+geo) reveal moderate overfitting, with high 
training accuracy and test accuracies below 0.9, 
indicating poor generalization, particularly for Logistic 
Regression. In the reduced dimension space (Fig. 6B), 
both Logistic Regression and Support Vector Classifier 
achieved consistent train/test accuracies above 0.96, 
significantly outperforming the full feature set. 
K-Nearest Neighbors remained overfitted due to the 
limited sample size. Figure 7 highlights substantial 
improvements in train/test accuracies across all models 
in the reduced dimension space.

The predictions run in the complete dataset (labeled 
and unlabeled; Fig. 8) show that all models have 
almost identical results, despite having completely 
different optimization objectives and internal structure. 
We restate here that these results were obtained by 
retraining the model on the entire labeled dataset. The 

green-highlighted area represents the region of interest 
with a high probability of predicting samples with High 
TOC values. This outcome supports the feasibility of 
modeling, as suggested during the EDA phase. The 
predicted values (low or high TOC) and the probability 
of the prediction using the SVC model on the best_
anova dataset are shown in Figure 9.

Geological variables measured in the field 
significantly influence modeling and prediction (Fig. 
4), particularly for the Río Mayer Formation. Among 
the XRD results, only the contribution of interstratified 
Illite-Smectite (IS) is notable. Interestingly, clay 
mineralogy of the unit is dominated by Illite (I) or 
Chlorite (Cl), both with IS as companion (Richiano et 
al., 2015). Clearly, the combination of the IS content 
with one or more of the geological variables makes the 
difference for prediction of TOC content in this case 
study.
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Figure 8. Predictions over T-SNE reduced dimension feature space for models trained with the full labeled dataset. Full circles 
represent labeled samples, while empty circles are predictions, with circle size representing the predicted probability. Green color 
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Figures 8 and 9 clearly highlight the potential 
sweet spot within the Río Mayer Formation for 
unconventional targets. However, future modeling 
should incorporate additional factors, such as 
fracturing properties and areal distribution (e.g., 
Niu et al., 2022). A more advanced machine 
learning workflow, known as ALICE, was developed 
by Chevron for unconventional plays (Prochnow 
et al., 2022). Tognolli et al. (2024) highlighted 
KNN as an effective method for classification and 
prediction, particularly for facies associations, 
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Figure 9. Visualization in the sedimentological profiles the TOC values measured in the Río Mayer Formation (n=29), the prediction 
of low vs high TOC and the probability of the prediction using the SVC model with the best_anova dataset (105 samples). The blue 
dots are considered by the model as low_TOC samples, while the green dots are interpreted as high_TOC.

but emphasized the need for additional studies 
to address algorithm limitations. For outcrop 
modeling of the Río Mayer Formation, expanding 
the TOC analysis database and incorporating more 
sedimentary sections will be crucial for enabling 
regional interpretations in future work.

CONCLUSIONS

The initial mathematical characterization of 
the main Lower Cretaceous back shale outcrops 
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in southern Patagonia highlights several key 
findings. At the Exploratory Data Analysis (EDA) 
the dimensional reduction techniques revealed 
continuous regions in feature space with similar 
TOC values, showing the potential of the dataset to 
be modeled. The PCA, T-SNE, and UMAP methods 
progressively improved section differentiation, 
with UMAP delivering the best results, indicating 
distinct feature space fingerprints for different 
sections. T-SNE excelled in visualizing both 
inter- and intra-section variability. The ANOVA 
F-Score effectively ranked features associated 
with high TOC content, while the silhouette 
index identified the optimal number of features. 
For the Dimensionality Reduction the previous 
feature selection was critical for building robust, 
generalizable models, as evidenced by LOO cross-
validation results. Logistic Regression was the most 
sensitive to high dimensionality. Finally, the Model 
Predictions across the dataset were consistent 
among models. While K-Nearest Neighbors struggled 
with generalization in reduced dimension space, its 
predictions aligned with other models, suggesting 
potential improvement with more samples. SVC 
emerged as the most robust method.  
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