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ABSTRACT

The Rio Mayer Formation (Lower Cretaceous) of the Austral Basin, Patagonia,
is a key source rock for unconventional reservoirs. This study explores the
potential of machine learning (ML) for predicting Total Organic Carbon (TOC)
content using outcrop data, a novel approach compared to traditional subsurface
data applications. Employing dimensional reduction techniques (PCA, T-SNE,
UMAP), the analysis revealed clear clustering of high TOC values in feature
space, supporting the feasibility of predictive modeling. Three ML models—
Logistic Regression, Support Vector Classifier (SVC), and K-Nearest Neighbors
(KNN)—were tested using a feature set derived from ANOVA F-Score rankings.
Dimensionality reduction improved model performance, with SVC achieving
the most robust results. Despite limited labeled samples, predictions across
models were consistent, identifying a promising region for high TOC. The study
highlights the importance of integrating geological variables and XRD data in
TOC modeling and emphasizes the need for expanded datasets and additional
sedimentary sections to enhance regional interpretations.

INTRODUCTION

In recent years, the use of machine learning
methods to analyze, model, and predict various
aspects of oil-bearing rocks has increased. These
methods have been used to predict Total Organic
Carbon (TOC; Handhal et al., 2020; Saporetti et al.,
2022), distribution of facies associations (Tognoli et
al., 2024), rock brittleness (Guo et al., 2022; Mustafa
et al., 2022; Ore and Gao, 2023), hydrocarbon
production predictions (Prochnow et al, 2022),
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and for reservoir characterization (Niu et al,
2022). These studies are based on subsurface data,
using cores, cuttings, or petrophysical (wireline)
data. Given the importance of analog outcrop data
for petroleum system characterization (Busch et
al., 2022), generating machine learning models
from outcrop data is highly significant. However,
scientific studies that integrate field and subsurface
data using machine learning methods remain scarce
(Milad et al, 2020). The TOC values represent
the amount of organic carbon preserved in a rock
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sample, and are often used to estimate the type
of hydrocarbon produced and/or retained, and it
defines the possibility of that rock to be a source
rock for hydrocarbons (more than 1%) (Passey et al.,
1990; Handhal et al., 2020; Saporetti ef al., 2022).

The Austral Basin is the southernmost oil-
producing basin in Argentina (Fig. 1). Initially, oil
production came from conventional reservoirs.
However, in the last decade the basin has been
intensely explored for unconventional reservoirs (e.g.
Belotti et al., 2013; 2014). The Rio Mayer Formation
(=Palermo Aike Formation in subsurface) constitutes
the main exploration target for unconventional
reservoirs in the basin (Rojas et al., 2022; Melendo
et al.,, 2023, and references therein). This unit is
primarily composed of black shales, with thinly
interbedded marls and sandstones (e.g., Richiano
et al., 2012). Unconventional shale reservoirs must
possess various characteristics, but foremost are
high TOC, rock brittleness, significant stratigraphic
thickness, and broad areal distribution. The analysis
of TOC is critical in oil-exploration, and efforts have
been made to measure it at lower costs and in less
time-consuming ways (e.g., Handhal et al., 2020;
Saporetti et al., 2022).
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In this paper, machine learning methods are applied
for the first time on the Rio Mayer Formation, a shale
target for non-conventional reservoirs. In addition,
this work is one of the few available models based on
outcrop data. In the next sections we describe the unit
and the data previously published, then we describe
the methods applied and run the database to finally
model the TOC prediction. Taking the above into
consideration, the objectives of this contribution are:
(1) to use machine learning to model the distribution
of sedimentological features (observed in the field), the
mineralogical composition, and the TOC from selected
samples; (2) to develop a workflow for predicting TOC
values in samples where measurements are missing;
and (3) to assess the accuracy of different mathematical
models applied in this case study.

GEOLOGICAL SETTING

The Austral-Magallanes Basin (Jurassic to Cenozoic)
is located in the southernmost part of Patagonia,
Argentina (Cuitifo et al., 2019) (Fig. 1). The basin was
initiated by Late Jurassic extension associated with
the El Quemado Complex (equivalent to the Tobifera
Formation) syn-rift sequence (Féraud et al., 1999;
Pankhurst et al., 2000). During subsequent transgression,
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Figure 1. Location of the study area. a) General map of the Austral Basin in southern Patagonia. b) Position of the Seccional Rio

Guanaco (PN) of the Los Glaciares National Park, related stratigraphy and sedimentary sections used (full information at Richiano

etal., 2012, 2015, 2019). Modified from Richiano et al. (2019).
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the continental to shallow marine Springhill Formation
(Tithonian to Berriasian) was deposited (Kraemer
and Riccardi, 1997; Richiano et al., 2016). During the
Berriasian, the transgression continued, leading to the
deposition of the Rio Mayer Formation, marking the
onset of postrift (sag) conditions (Arbe, 2002). This
unit mainly comprises black shales with fossiliferous
levels indicating Berriasian-Albian deposition (i.e.,
Kraemer and Riccardi, 1997; Aguirre Urreta, 2002).
The outcrops of the Rio Mayer Formation are covered
transitionally from north to south by the Piedra Clavada
(=Kachaike), Lago Viedma and Cerro Toro formations
during the Aptian/Albian (Richiano et al., 2012; Cuitifio
et al., 2019).

At the Seccional Rio Guanaco locality (Fig. 1)
the Rio Mayer Formation is ca. 400 m thick and was
previously subdivided into three informal sections
(Richiano ef al., 2012). The lower section is dominated
by laminated black shales interbedded with marls,
with abundant ammonites and belemnites, interpreted
as deposited in an outer shelf setting (Richiano et al.,
2012). This section has the highest TOC content of
the Rio Mayer Formation, ranging between 0.07 and
2.81% (Richiano, 2014). The middle section is 40 m
thick and it is composed of intensely bioturbated dark
marls and shales, characterized by trace fossils of the
Zoophycos Ichnofacies (Richiano et al., 2013; Richiano,
2015). The TOC in the middle part of the section is very
low (< 0.58%; Richiano, 2014). The upper section is
composed of massive black shales intercalated with
very fine- to fine-grained sandstones, interpreted as an
outer shelf with distal low-density turbidity current
deposits (Richiano et al.,, 2012). In this section, the
Zoophycos Ichnofacies was also reported (Richiano et
al., 2013; Richiano, 2015). This section shows moderate
TOC values at the base (0.5-2 %, average 1.12 %) and
extremely low values towards the top. The frequent
intercalation of sandstones in the uppermost part of the
section is related to the distal influence of the deltaic
deposition whose lithologic expression at the basin
margins is the Piedra Clavada Formation to the north
(Richiano et al., 2012; 2015).

DATABASE AND METHODS
Sedimentary sections and samples analyzed
Three sedimentary sections of the Lower

Cretaceous Rio Mayer Formation were selected for
sedimentological, mineralogical and geochemical

analyses (Sections IG, PG, PA; Fig. 2). A total of 106
fine-grained rock samples from Rio Mayer Formation
were collected and analyzed (Fig. 2). The initial step
involved converting the outcrop data into numerical
values. In this sense, three “field parameters”
were assigned to each sample. First, following the
methodology used by Poiré et al. (2007), numerical
values were assigned to sedimentary facies, wherein
different values characterized the sedimentary
texture and sedimentary structures (i.e., fabric).
Secondly, different codes were applied to the
sedimentary environments interpreted, using one
(1) for outer shelf deposits and two (2) for outer
shelf deposits influenced by deltaic environments.
Finally, the last parameter is the bioturbation for
which we use a binary discrimination between
non-bioturbated (0) and bioturbated (1). The full
sedimentary facies analysis, ichnology, and the
compositional dataset used in this work are available
in Richiano et al. (2012; 2013; 2015; 2019).

The X-ray diffraction (XRD) characteristics of
the samples were conducted on an X-PANalytical
model X Pert PRO diffractometer located at the
Centro de Investigaciones Geoldgicas (CONICET-
UNLP, Argentina). The radiation source used was
Cu/Ni, and the generation settings were set at 40
kV and 40 mA. For the whole-rock analysis, semi-
quantification was obtained from the intensity of
the main peak for each mineral (Schultz, 1964;
Moore and Reynolds, 1997). Clay mineralogy was
determined from diffraction patterns obtained
using samples that were air-dried, ethylene glycol-
solvated and heated to 550°C for 2 h (Brown and
Brindley, 1980).

Geochemical studies of the samples from the Rio
Mayer Formation include 17 samples analyzed for
major, minor, trace elements, and rare earth elements
(REE) by X-ray fluorescence spectrometry (XRF) and
Inductively Coupled Plasma mass spectrometry (ICP-
MS) measurements performed by ACTLABS (Ontario,
Canada). In addition, 28 samples were assessed to
determine trace element composition at Centro de
Investigaciones Geolégicas laboratories (CONICET-
UNLPE, Argentina). These samples were treated by
dissolving the silicates in acid, and analyzed using
a Perkin-Elmer ICP-MS fitted with a Meinhardt
concentric nebulizer. Finally, 29 TOC values were
obtained from within five lateral meters from the
collected outcrop profile. TOC was ascertained by
Geolab Sur S.A. (Buenos Aires, Argentina).
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Figure 2. Sedimentary logs of the Rio Mayer Formation at the Seccional Rio Guanaco locality (profiles IG, PG, PA located in figure
1). XRD: x-ray diffraction analysis; TOC: Total Organic Carbon. Modified from Richiano et al. (2019).

The raw dataset consists of a total of 106
samples, including 103 samples with XRD analysis
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(103 whole rock and 101 of clay), 45 geochemical
analyses and 29 samples of TOC (Table 1).

LAJSBA | LATIN AMERICAN JOURNAL OF SEDIMENTOLOGY AND BASIN ANALYSIS | VOLUME 32 (2) 2025, 121-136



Predictive analysis of total organic carbon (TOC) in shale targets: example from...

Data Analysis

Data analysis and modeling were performed using
Python, primarily using commonly available libraries
such as NumPy, pandas, matplotlib, seaborn, umap-
learn, and scikit-learn. The dataset’s features were
grouped into two categories: ‘geo’ for geological data
(3 features) and ‘xrd’ for X-ray diffraction data (10
features). Although X-ray fluorescence and ICP-MS
data were included in the dataset, the sample size
was too small for robust analysis. Missing XRD data
were imputed using the population mean.

Exploratory Data Analysis (EDA) was conducted
to investigate the dataset, applying dimensionality
reduction techniques like PCA, T-SNE, and UMAP
to project the feature space into two dimensions.
Feature scaling was consistently applied using
the StandardScaler class from scikit-learn. This
process enabled the identification of high and low
TOC areas, which are needed for TOC modeling.
Visualizations of both labeled and unlabeled data
(with and without TOC measurements) provide
insight to the geological variability within and
across sections.

Geological field data X-Ray Diffraction
Sample Lithology Environment Whole Rock Clays TOC
Sed. Bioturbation
Fac. NF 1 2 Qz| Pl |FK | Ca | Py I [IS|Cl| K
PA-15 Pm 12 0 0 1 6 | 3 1 1 1 3 132119]149( 0
PA-14 Pm 12 0 0 1 6 | 3 1 3 1 3 13511649 0 | 0,09
PA-13 Pm 12 0 0 1 6 | 3 1 2 1 3 139]|11(49] 0
PA-11 Pm 12 0 0 1 6 | 3 1 3 1 313015550
PA-10 Pm 12 0 0 1 6 |3 1 3103 28([21|51]0
PA-9 Pm 12 0 0 1 6 1411 3103 [38(14]48] 0| 0,09
PA-8 Pm 12 0 0 1 6 | 3 112 1 3128205110
PA-6 Pm 12 0 0 1 6 | 3 1 2 1 312913041 0 ] 0,09
PA-5 Pm 12 0 0 1 6| 4 1 1 1 3130119510
PA-3 Pm 12 0 0 1 6| 4 1 1 1] 436 5910
PA-2 Pm 12 0 0 1 6| 3 1 1 1 3132 581 0 [ 0,09
PA-1 Pm 12 0 0 1 6 | 3 1 1 1 3 130]|24(461] 0
PG 64 Pl 10 0 1 0 6 | 2 1 210 241(24]35]0
PG 60 Pl 10 0 1 0 6 | 3 114103 ([34]21)145] 0 | 1,48
PG 59 Pl 10 0 1 0 6 |2 1 1 0 2|41 (31]127] 0
PG 55 Pm 12 0 1 0 6 |3 1 210 3139(23]138] 0] 06
PG 54 Pm 12 0 1 0 6 |3 1 210 3 [45(14]41] 0
PG 52 Pm 12 0 1 0 6 21212103 ([26]34]140] 0
PG 51 Pm 12 0 1 0 6 | 2 1 3 0] 312213444 0
PG 50 Pm 12 0 1 0 6 |1 11 4]0 3]24]140]36| 0| 1,81
PG 48 Pm 12 0 1 0 6 1 1 3103 25]124]51|60
PG 45 Pm 12 0 1 0 6 |3 1 1 02 1]34]13]52]0
PG 44 Gg 40 0 1 0 51 4 1 6 1 14120(20[60] 0
PG 43 Sm 30 0 1 0 415 1 5101315601440
PG 42 Pm 12 0 1 0 6 1 12 ]10] 2 ([22]21]57] 0 (0,62
PG 41 S1 33 0 1 0 515 112 141662 (32]0
PG 40 Pm 12 0 1 0 6 | 3 1 1 1 4 |61 11]28](0
PG 39 S1 33 0 1 0 415 1 3 1 4 180 f|15]0
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1Ga2 | Pl | 10 0 1 0 Jel2ltl2]1]2l4a]35]20] 4] 159
1Gal | Pl | 10 0 1 0 |sl1l1lslol2/l28]3a|12]s6
G40 | Pl | 10 0 1 0 |6l 11402 /3a]aali5|7 |24
1G39 | Pl | 10 0 1 0 |6l 11111103 /38]50]09]3]20
IG3‘;7 | | 10 0 1 o {el21]s]o]3]a6]37|16] 0188
1G36 | Pl | 10 0 1 0 |6l 111 o3 [a5]39][13]a
IG3354 1 e | 10 0 1 o |el2l1]lalolslse]|si|i3|o]ies
IG;; | e |10 0 1 o lel2l 11 |1]3]36]alai|o
IG3310 | e | 10 0 1 o [el2l1l3]ol|2|35]aa]1s]3
1G29 | Pl | 10 0 1 0 |31 1]1l6lol2][s2]31112]6
IG2287 | om0 0 1 o {621 l2]0]|3/al30]17]4]1s6
1G26 | Pl | 10 0 1 0 |6l 1] 1113 2al37]15]24
IG2'524' Pl | 10 0 ! o [el2l1 3] 1]|3|2]4]21]10
1G23 | Mm | 12 0 1 0 L6l 21113113 4[30]2]3]143
1G22 | Mm | 12 0 1 0 le6l2l1 3103 /a]37]20]2
IG2210 | e | 10 0 1 o lel1 |1 l3lol3]|31]a]|2a]as
IG1198 | om0 0 ! o el 11 3]ol3]|sol3]17]2
G17 | Pl | 10 0 1 0 |6l 1 11 5]o0]l33ala]20]al]z2si
1G16 | Mm | 12 0 1 0 | a1l 16l t|2]38]30]21]1
IG1154 | e | 10 0 1 o el 11 l1]o]3]al36]16]2
IG1132 | om0 0 ! o lel2li13lol3|arlas]as]| o152
1G11lo 1 pm | 10 0 | o lel2li1|3lo]l3]|ea|las]nn]s
1Go | Pl | 10 0 1 0 6] 213 03 48[39]13]0]150
1G 8 Pl | 10 0 1 0 |6l2 1113 0103 /59]26]15]0
G7 | Pl | 10 0 1 0 |6l 111131013 4]32]15]7
1G6 | Pl | 10 0 1 0o le6l1 113 lol3][s7]28[15]0
1G5 Pl | 10 0 1 0 |6l 11103 4]33]21]o0
1G4 | Pl | 10 0 1 0 |6l 11 l1]l1l3le0]1o]2t|o0]007
1G3 | cm | 12 0 ) 0 | 2111116l 1l2137]2][2]a
G2 | cm | 12 0 ] 0o | 2121116l 1217718 2
G1 | cm | 12 0 1 0 l2l1l1l6lo]2/6t]2a 6

Table 1. Data set used for modeling. References: Facies: P: Mudstone; M: Marl; S: Sandstone; G: Conglomerate/Sabulite; C:
Carbonatic; m: massive; 1: laminated; b: bioturbated; g: glauconitic. NF: numerical facies. Environment: 1- outer shelf, 2- outer
shelf influenced by deltas; XRD: x-ray diffraction; Qz: Quartz, Pl: Plagioclase; FK: K-feldespar; Ca: Calcite; Py: Pyrite; Arc: total
clays; I: Illite; IS: Illite-Smectite; Cl: Chlorite; K: Kaolinite; TOC: Total Organic Carbon.
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Data Preprocessing

Figure 3a illustrates the data preprocessing
workflow. A threshold of >1 was applied to
the measured TOC values to create a binary
classification, with 1 indicating High TOC and 0
indicating Low TOC. This threshold resulted in a
nearly balanced dataset for training the classification
model, removing the necessity for additional
techniques (e.g., precision/recall metrics, over- or
under-sampling) to address dataset imbalance.

In order to address feature space dimensionality
during TOC modeling (13 features for only 29
labeled samples), a feature selection process was
implemented based on a feature importance metric.

Data Preprocessing

/ Raw dataset

drx+geo
features (13)

Reduced dataset \

best_anova
features (4)

ANOVA
feature
selection

Thresholding

N /

106 samples 29 samples

29 samples

toc

29 samples

E] Modeling

Several methods for computing feature importance
were attempted (Random Forest, LinearSVC,
Lasso and ANOVA). The quality of High/Low TOC
separation in the feature space was evaluated
using the silhouette coefficient (Rousseeuw, 1987).
Feature selection was performed using an additive
approach, prioritizing features in descending order
of importance while monitoring changes in the
silhouette score. The addition of features was halted
upon observing a significant decline in the silhouette
score.

Feature ranking by ANOVA F-Score and the
computed silhouette are shown, as well as the impact
of feature selection on sample spatial distribution in
reduced dimension (T-SNE) in the results section.

Prediction

-

~

labeled +
unlabeled
dataset

hi_toc_pred
hi_toc_prob

106 samples 106 samples

-

Candidate
Model

labeled

dataset BSO LOO
Bayesian Search -
s Crossvalidation
Optimization

29 samples

Model Selection
(Average Accuracy)

Selected Model Refitting Final
Model Model

T )

\_

/

Figure 3. Modeling Workflow. a) Data Preprocessing Workflow. Continuous TOC values are thresholded to obtain a binary High
TOC label. Using this categorical label, an additive feature selection process is performed by using ANOVA F-Score. Exploratory
Data Analysis using dimensional reduction on feature space (all xrd+geo features). b) TOC Modeling Workflow. By using a
labeled dataset, a candidate model is fitted. Model hyperparameters are adjusted by performing a Bayesian Search Optimization
(BSO), and the model’s generalization performance is estimated with Leave-One-Out (LOO) cross validation. The model with best
average test accuracy is selected and refitted on the full dataset. ¢) High TOC Prediction Workflow. Using the trained model, High
TOC is predicted for all samples (labeled and unlabeled), identifying potential regions of interest in feature space.
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TOC Modeling

The TOC modeling workflow is shown in figure
3b. A candidate model is fitted to a labeled dataset
consisting of a set of selected features and their
corresponding discretized High-TOC labels. In
order to test the hypothesis (i.e. modeling of TOC
is possible) we run three classification methods:
Logistic Regression, Support Vector Classifier (SVC)
and K-Nearest Neighbours Classifier (KNN). These
models have different working principles, one is
a parametric baseline model (Logistic regression),
another is a state-of-the-art parametric model (SVC)
and the last is a non- parametric method (k-NN). All
of them are available in the scikit-learn library.

Optimal hyperparameters for each model were
determined wusing a combination of Bayesian
Hyperparameter Search and Leave-One-Out (LOO)
cross-validation, with the mean accuracy of the left-
out sample in each split serving as the performance
metric. This method ensured the selection of
hyperparameters that maximize predictive accuracy
on unseen data.

Following hyperparameter selection, train/test
accuracy plots were visually inspected to assess
variance and bias, serving as indicators of potential
overfitting or underfitting. The model was then
retrained using the selected hyperparameters on all

labeled samples and applied to predict the High-TOC
content for both labeled and unlabeled samples.

TOC Prediction

The prediction workflow (Figure 3c) uses the
full dataset, including both labeled and unlabeled
samples, as input to the selected model and generates
predictions for TOC values. These predictions
can be either continuous (probability of High
TOC) or discrete (High TOC probability > 0.5).
Model predictions can be visualized in a reduced-
dimensional space (e.g., T-SNE) to identify regions in
the feature space associated with a high probability
of High TOC.

RESULTS

This work focuses on the mathematical modeling
of the data needed to predict TOC contents. In this
sense, sedimentological, ichnological, environmental
and/or compositional data can be found in Richiano
et al. (2012; 2013; 2015; 2019).

Exploratory Data Analysis (EDA)

Figure 4 presents the results of dimensionality
reduction methods (PCA, T-SNE, UMAP). High TOC

Dimensional reduction (xrd+geo)
method: pca method: t-sne method: umap
section section section
° PA * PA * PA
* PG - PG * PG
- 1G - 1G - 1G
¢« 05 « 0.5 « 05
e10 | 1.0 1.0
~N 1.5 | 1.5 1.5
o 20 | 2 2.0 N |e20
g @25 €D ®25 % @25
£
5
pca_1 t-sne_1 umap_1

Figure 4. Exploratory Data Analysis via Dimensional Reduction. Left: Principal Component Analysis (PCA). Center: T-distributed

Stochastic Neighbor Embedding (T-SNE). Right: Uniform Manifold Approximation and Projection for Dimension Reduction

(UMAP). TOC values are mapped in point sizes, while different colors are assigned to each section. High-TOC samples are

consistently grouped in a region of space in all dimension red
inter- and intra-section variability.

uction schemas. T-SNE provides the best results in visualizing both

LAJSBA | LATIN AMERICAN JOURNAL OF SEDIMENTOLOGY AND BASIN ANALYSIS | VOLUME 32 (2) 2025, 121-136 129



S. Richiano and F Ares

values cluster in a specific region corresponding
to part of the PG section and nearly all labeled IG
samples. In PCA space, the PG and IG sections
significantly overlap, while PA is partially isolated
with minor overlap with unlabeled PG samples. In
T-SNE space, PA is distinctly isolated, and PG and
IG show greater contrast. UMAP space reveals clear
section contrasts: PA appears isolated in the lower
left, while PG and IG show slight overlap in the lower
right.

Feature ranking and selection

To reduce dimensionality before training the model,
the most significant features were selected using
ANOVA (Fig. 5a). Illite-Smectite abundance (xrd _arc_
is) emerged as the most significant feature, followed
by geological features: sedimentary facies (geo_ num
facies), bioturbation (geo__ bioturb), and environment
(geo__amb). The Silhouette coefficient remained

importance

Feature Ranking by ANOVA
target: y_hi_toc

feature

silhouette

xrd+geo
section
° PA
* PG
° 1G
¢ 0.5
N e 1.0
o 15
< e 20
2 e25
t-sne_1

Feature selection

t-sne 2

best_anova

section
* PA
* PG
- IG

000 o o
NN = =0
mowmowm

t-sne_1

Figure 5. a) Feature importance (ANOVA F-score) and resulting Silhouette score after additive feature selection. The Silhouette

score shows an abrupt decline after adding the fifth feature, indicating a potentially poor intra vs inter-cluster definition. b)

Visualization of feature selection results in T-SNE reduced dimension. Left: Dimension reduction using all features (xrd+geo)

as reference. Right: Dimension reduction of four most ANOVA F-Score relevant features (best_anova). Higher TOC values are

considerably compacted in feature space, while being visibly isolated from samples with lower TOC content.
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consistently high but dropped sharply after the fifth
feature (Chlorite; xrd _arc_cl), so only the top four
features were retained. Other ranking methods, though
not shown, also identified the first three features as
highly significant.

The spatial distribution of samples using all
features versus the ANOVA-Silhouette selected
compared in T-SNE
dimensional space (Fig. 5b). In the feature selection
scenario (right), high TOC samples -clustered
prominently in the upper left corner.

features was reduced-

Modeling

Figures 6a and 6b show resulting mean accuracies
of all trained models over train and test samples.
Models trained on the full feature space (xrd+geo)
show a greater tendency to overfit which is

manifested as lower accuracies and a significant gap
between train and test performance. While all models
reported lower mean accuracies when trained in the
full feature space, SVC appeared as the most robust
model when working with higher dimensionality.
When trained with a reduced feature set, the three
proposed models showed improved performance.
Logistic regression and SVC had a consistent test-
train accuracy over 0.96, whereas KNN improved
only slightly below this value and exhibited some
overfitting behavior.

DISCUSSION

The analysis of the distribution of TOC content
in shale targets is a crucial objective needed for the
exploration and development of unconventional
shale reservoirs. While detailed studies on the

Accuracy (xrd+geo)
logistic svc knn
train_test train_test
train train
test test
(0] (] (]
It 2 2
Q Q Q
O
@ ? @
train_test
train
test
rank_test_score rank_test_score rank_test_score
E Accuracy (best_anova)
logistic knn
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o
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Figure 6. Train/test accuracy plots ranked by best average test accuracy. Left: Logistic Regression. Center: Support Vector Classifier
(SVC). Right: K-Nearest Neighbors. a) Trained with all features (xrd+geo): All models exhibit moderate overfitting, as indicated by
high training accuracy and low test accuracy. Logistic Regression shows the worst performance. b) Trained with ANOVA selected

features (best_anova): There is a significant improvement in the Logistic and Support Vector Classifier with consistent train/test

accuracy values over 0.96, while KNN shows a slight improvement. Error bars represent 95% Confidence interval.
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outcrops of the main source rock in southern
Patagonia have been published in the past decade
(e.g., Richiano et al., 2019 and references therein),
this study represents the first application of
mathematical modeling to test the potential of
machine learning as a predictive method for TOC.
Given the unbalanced dataset, only outcrop data
and XRD were used, while geochemical rock studies
were excluded except for TOC content.

During EDA all explored dimension reduction
techniques proved to be wuseful to visualize
distribution of labeled and unlabeled samples in
feature space (Fig. 4). This is extremely useful to
design a cost-effective analytical approach over
remaining (TOC) unlabeled samples, to allow a
uniform TOC sampling across feature space. Despite
having only a limited number of labeled samples
(approximately 30% of the dataset), spatial clustering
of high TOC values was evident across all reduced-
dimensionality scenarios.

A major difference was observed in the spatial
discrimination of different sections. PCA shows a
superposition of all three sections, particularly in
the PG and IG sections. T-SNE clearly distinguished
the PA section as a completely isolated cluster, while
the PG and IG sections show greater contrast, with
minor overlap in high TOC values within PG. UMAP
provides the best sectional contrast: IG is isolated
in the upper-left corner, while PG and IG occupy
a broader area in the lower-left, with minimal
overlap between their coverages. However, UMAP
fails to display intra-section variability, especially
after applying feature selection. Overall, T-SNE

provides the best results in visualizing both inter-
and intra-section variability, making it the preferred
dimensionality reduction technique for visualizing
feature selection and modeling results. This result
is highly promising for successful modeling, as it
demonstrates the existence of a nonlinear mapping
in which the sections exhibit non-overlapping
coverage.

Feature ranking by ANOVA F-Score was key in
successfully identifying features that are strongly
related to high TOC content. Silhouette index
allowed to monitor the impact of additive feature
selection on the spatial isolation of the high
TOC samples helping to develop visual criteria
to set the number of selected features (Fig. 5a).
Although not included in this work, Random
Forest and LinearSVC were also evaluated for
feature importance, showing strong agreement on
the top three features. However, their Silhouette
performance was inferior. Figure 5b shows how
reduced dimensionality from 13 to 4 did not
mitigate the discrimination of the High TOC cluster
and drastically improved its density.

With only 29 samples available for TOC analysis
compared to 13 features, modeling and cross-
validation are highly challenging. Dimensionality
reduction through feature selection is essential for
building a robust, generalizable model. Leave-One-Out
cross-validation was used to estimate generalization
accuracy but required extensive training iterations.
Bayesian Search Optimization replaced exhaustive
Grid Search, reducing training time.

Figure 7. Best Train and Test accuracies. Left: models trained with full dataset (xrd+geo). Right: ANOVA selected features (best_anova).
Error bars represent 95% Confidence intervals. Modeling performance in the test set is improved in the feature selection scenario.
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Accuracy curves (Fig. 6a) for the full feature set
(xrd+geo) reveal moderate overfitting, with high
training accuracy and test accuracies below 0.9,
indicating poor generalization, particularly for Logistic
Regression. In the reduced dimension space (Fig. 6B),
both Logistic Regression and Support Vector Classifier
achieved consistent train/test accuracies above 0.96,
significantly outperforming the full feature set.
K-Nearest Neighbors remained overfitted due to the
limited sample size. Figure 7 highlights substantial
improvements in train/test accuracies across all models
in the reduced dimension space.

The predictions run in the complete dataset (labeled
and unlabeled; Fig. 8) show that all models have
almost identical results, despite having completely
different optimization objectives and internal structure.
We restate here that these results were obtained by
retraining the model on the entire labeled dataset. The

green-highlighted area represents the region of interest
with a high probability of predicting samples with High
TOC values. This outcome supports the feasibility of
modeling, as suggested during the EDA phase. The
predicted values (low or high TOC) and the probability
of the prediction using the SVC model on the best
anova dataset are shown in Figure 9.

Geological variables measured in the field
significantly influence modeling and prediction (Fig.
4), particularly for the Rio Mayer Formation. Among
the XRD results, only the contribution of interstratified
[llite-Smectite (IS) is notable. Interestingly, clay
mineralogy of the unit is dominated by Illite (I) or
Chlorite (Cl), both with IS as companion (Richiano et
al., 2015). Clearly, the combination of the IS content
with one or more of the geological variables makes the
difference for prediction of TOC content in this case
study.

Model Prediction (xrd+geo)
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Figure 8. Predictions over T-SNE reduced dimension feature space for models trained with the full labeled dataset. Full circles
represent labeled samples, while empty circles are predictions, with circle size representing the predicted probability. Green color
represents a highly probable High-TOC value, while Blue circles have a low probability of high TOC. Left: Logistic Regression,
Center: Support Vector Classifier, Right: K-Nearest Neighbors. a) Training with all features (xrd+geo). Predictions show slight
variability between Logistic Regression and Support Vector Classifier models, while K-Nearest Neighbors provides a wider
coverage. b) Training with reduced feature space (best_anova). Prediction is consistent across all models.
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Figure 9. Visualization in the sedimentological profiles the TOC values measured in the Rio Mayer Formation (n=29), the prediction
of low vs high TOC and the probability of the prediction using the SVC model with the best_anova dataset (105 samples). The blue
dots are considered by the model as low_TOC samples, while the green dots are interpreted as high_ TOC.

Figures 8 and 9 clearly highlight the potential
sweet spot within the Rio Mayer Formation for
unconventional targets. However, future modeling
should incorporate additional factors, such as
fracturing properties and areal distribution (e.g.,
Niu et al.,, 2022). A more advanced machine
learning workflow, known as ALICE, was developed
by Chevron for unconventional plays (Prochnow
et al., 2022). Tognolli et al. (2024) highlighted
KNN as an effective method for classification and
prediction, particularly for facies associations,

but emphasized the need for additional studies
to address algorithm limitations. For outcrop
modeling of the Rio Mayer Formation, expanding
the TOC analysis database and incorporating more
sedimentary sections will be crucial for enabling
regional interpretations in future work.

CONCLUSIONS

The initial mathematical characterization of
the main Lower Cretaceous back shale outcrops
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in southern Patagonia highlights several key
findings. At the Exploratory Data Analysis (EDA)
the dimensional reduction techniques revealed
continuous regions in feature space with similar
TOC values, showing the potential of the dataset to
be modeled. The PCA, T-SNE, and UMAP methods
progressively improved section differentiation,
with UMAP delivering the best results, indicating
distinct feature space fingerprints for different
sections. T-SNE excelled in visualizing both
inter- and intra-section variability. The ANOVA
F-Score effectively ranked features associated
with high TOC content, while the silhouette
index identified the optimal number of features.
For the Dimensionality Reduction the previous
feature selection was critical for building robust,
generalizable models, as evidenced by LOO cross-
validation results. Logistic Regression was the most
sensitive to high dimensionality. Finally, the Model
Predictions across the dataset were consistent
among models. While K-Nearest Neighbors struggled
with generalization in reduced dimension space, its
predictions aligned with other models, suggesting
potential improvement with more samples. SVC
emerged as the most robust method.
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